首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Based on the existing asymptotic solutions of the displacement and singular stress fields in the vicinity of a singular point in 2D orthotropic elastic materials, the two simple eigenequations are explicitly given for the symmetric and anti-symmetric deformation modes to determine the orders of the stress singularity at the interface corner in orthotropic bi-materials, respectively. The related displacement and singular stress fields near the interface corner are also explicitly established. The relevant stress intensity factors are defined as in the case of crack problems. The theoretical results have been confirmed by numerical, finite-element-based results in a special bi-material case. The solution obtained in this paper may be applied to the interface corner in the orthotropic/orthotropic, orthotropic/isotropic, and isotropic/isotropic bi-materials, and it will be very useful to evaluate the strength of the bonded orthotropic bi-materials with interface corners.  相似文献   

3.
We investigated the asymptotic problem of a kinked interface crack in an orthotropic bimaterial under in‐plane loading conditions. The stress intensity factors at the tip of the kinked interface crack are described in terms of the stress intensity factors of the interface crack prior to the kink combined with a dimensionless matrix function. Using a modified Stroh formalism and an orthotropy rescaling technique, the matrix function was obtained from the solutions of the corresponding problem in transformed bimaterial. The effects of orthotropic and bimaterial parameters on the matrix function were examined. A reduction in the number of dependent material parameters on the matrix function was made using the modified Stroh formalism. Moreover, the explicit dependence of one orthotropic parameter on the matrix function was determined using an orthotropic rescaling technique. The effects of the other material parameters on the matrix function were numerically examined. The energy release rate was obtained for a kinked interface crack in an orthotropic bimaterial.  相似文献   

4.
New enrichment functions are proposed for crack modelling in orthotropic media using the extended finite element method (XFEM). In this method, Heaviside and near‐tip functions are utilized in the framework of the partition of unity method for modelling discontinuities in the classical finite element method. In this procedure, by using meshless based ideas, elements containing a crack are not required to conform to crack edges. Therefore, mesh generation is directly performed ignoring the existence of any crack while the method remains capable of extending the crack without any remeshing requirement. Furthermore, the type of elements around the crack‐tip remains the same as other parts of the finite element model and the number of nodes and consequently degrees of freedom are reduced considerably in comparison to the classical finite element method. Mixed‐mode stress intensity factors (SIFs) are evaluated to determine the fracture properties of domain and to compare the proposed approach with other available methods. In this paper, the interaction integral (M‐integral) is adopted, which is considered as one of the most accurate numerical methods for calculating stress intensity factors. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
This paper deals with a new independent path integral which provides the mixed-mode during a creep crack growth process in viscoelastic orthotropic media. The developments are based on an energetic approach using conservative laws. The mixed-mode fracture separation is introduced according to the generalization of the virtual work principle. The fracture algorithm is implemented in a finite element software and coupled with an incremental viscoelastic formulation and an automatic crack growth simulation. This M-integral provides the computation of stress intensity factors and energy release rate for each fracture mode. A numerical validation, in terms of energy release rate and stress intensity factors, is carried out on a CTS specimen under mixed-mode loading for different crack growth speeds.  相似文献   

6.
Crack tip element method is applied to the formulation of the energy release rate associated with interfacial crack growth of laminates with residual thermal stresses using the Timochenko beam model. Special attention is paid to the energy release rates of double cantilever beam and mixed-mode bending tests of bi-material specimens, and mode-I and mode-II energy release rates are formulated including residual thermal stresses. The derived results are verified by the comparison to finite element analysis, and the effect of residual thermal stresses on the mode mixity of the double cantilever beam and mixed-mode bending tests is discussed.  相似文献   

7.
Fatigue crack growth (FCG) along an interface is studied. Instead of using the Paris equation, the actual process of material separation during FCG is described by the use of an irreversible constitutive equation for the cyclic interface traction-separation behavior within the cohesive zone model (CZM) approach. In contrast to past development of CZMs, the traction-separation behavior does not follows a predefined path. The model definition, its predicted cyclic material separation behavior and application to a numerical study of interface FCG in double-cantilever beam, end-loaded split and mixed-mode beam specimens are reported.  相似文献   

8.
New numerical methods were presented for stress intensity factor analyses of two-dimensional interfacial crack between dissimilar anisotropic materials subjected to thermal stress. The virtual crack extension method and the thermal M-integral method for a crack along the interface between two different materials were applied to the thermoelastic interfacial crack in anisotropic bimaterials. The moving least-squares approximation was used to calculate the value of the thermal M-integral. The thermal M-integral in conjunction with the moving least-squares approximation can calculate the stress intensity factors from only nodal displacements obtained by the finite element analysis. The stress intensity factors analyses of double edge cracks in jointed dissimilar isotropic semi-infinite plates subjected to thermal load were demonstrated. Excellent agreement was achieved between the numerical results obtained by the present methods and the exact solution. In addition, the stress intensity factors of double edge cracks in jointed dissimilar anisotropic semi-infinite plates subjected to thermal loads were analyzed. Their results appear reasonable.  相似文献   

9.
In this paper a special crack tip element has been developed in which displacements and stresses have the same behaviour as those of bi‐material interface cracks with open tips. The element degenerates into a traditional triangular quarter point element in cases of homogeneous cracks. An isoparametric co‐ordinate system (ρ, t) is defined in this study, and numerical techniques using these co‐ordinates to evaluate Jacobian matrices, shape function derivatives, and element stiffness matrices are developed. Also, equations calculating the complex stress intensity factor using displacements are obtained in this study. Numerical results are in good agreement with known analytical solutions in two examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
We present an incremental quasi‐static contact algorithm for path‐dependent frictional crack propagation in the framework of the extended finite element (FE) method. The discrete formulation allows for the modeling of frictional contact independent of the FE mesh. Standard Coulomb plasticity model is introduced to model the frictional contact on the surface of discontinuity. The contact constraint is borrowed from non‐linear contact mechanics and embedded within a localized element by penalty method. Newton–Raphson iteration with consistent linearization is used to advance the solution. We show the superior convergence performance of the proposed iterative method compared with a previously published algorithm called ‘LATIN’ for frictional crack propagation. Numerical examples include simulation of crack initiation and propagation in 2D plane strain with and without bulk plasticity. In the presence of bulk plasticity, the problem is also solved using an augmented Lagrangian procedure to demonstrate the efficacy and adequacy of the standard penalty solution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the problem of a crack normal to an interface in two joined orthotropic plates is studied as a plane problem. Body force method is used to investigate dependence of the stress intensity factor on the elastic constants: E x1, E y1, G xy1, V xy1 for material 1 and E x2, E y2, G xy2, V xy2 for material 2. A particular attention is paid to simplifying kernel functions, which is used in the body force method, so that all the elastic constants involved can be represented by three new parameters: H 1, H 2I, H 3 for the mode I deformation and H 1, H 2II, H 3 for the mode II deformation. From the kernel function so obtained it is found that the effects of the eight elastic constants on the stress intensity factors can be expressed by the three material parameters, H 1, H 2I, H 3 and H 1, H 2II, H 3, respectively for K I and K II. Furthermore, it is also found that the dependence of K I on H 1, H 2I, H 3 is exactly the same as the dependence of K II on H 1, H 2II, H 3. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Stress intensity factors of bimaterial interface cracks are evaluated based on the interaction energy release rates. The interaction energy release rate is defined based on the energy release rates of a cracked body, corresponding to two independent loading conditions, actual field and an auxiliary field, and is related to the sensitivities of the potential energies for crack extensions. The potential energy of a cracked body is expressed with a domain integral, which is converted to a boundary integral expression by applying the divergence theorem. By differentiating this expression with the crack length, a boundary integral expression for the interaction energy release rate is obtained. The boundary integral representation for the interaction energy release rate involves the displacement, the traction, and their sensitivity coefficients with respect to the crack length. The boundary element sensitivity analyses are used to calculate these quantities accurately. A regularized boundary integral equation relating the boundary displacement and traction is differentiated with respect to an arbitrary shape parameter to derive the regularized boundary integral equation for the sensitivity coefficients of the boundary displacement and traction. The proposed approach is applied to several cracks in dissimilar media and the results are compared with those obtained by the conventional approach based on the extrapolation method. The analytical displacement and stress solutions for an interface crack between two infinite dissimilar media subjected to uniform stresses at infinity are used to give the auxiliary field, in which the values of the stress intensity factors are known. It is demonstrated that the present method can give accurate results for the stress intensity factors of various bimaterial interface cracks under coarse mesh discretizations.  相似文献   

13.
The elastic support method was recently developed to simulate the effects of unbounded solids in the finite element analysis of stresses and displacements. The method eliminates all the computational disadvantages encountered in the use of `infinite' elements or coupled finite element boundary element methods while retaining all the computational advantages of the finite element method. In this paper, the method is extended to the elasto-plastic analysis of fracture in infinite solids by using the load increment approach and including the effects of strain hardening. Numerical tests and parametric study are conducted by analysing a straight crack in an infinite plate. Present results for J integrals and plastified zones are compared, respectively, with analytical solutions and available results obtained by using the body force method. The agreement between the results is found to be very good even if the truncation boundary of the finite element model is located very close to the crack tip or the plastified zone.  相似文献   

14.
The strain energy release rate for a straight-fronted edge crack in a bar of circular cross section subjected to pure bending is determined. The cracked bar is modelled with two-dimensional plane-stress finite elements and strain energy release rates, determined from this model, are shown to be in close agreement with existing results for a bar subjected to three-point bending in which strain energy release rates were determined by measuring the compliance of the bar experimentally. The strain energy release rates for a crack in the circular cross section bar are found to be lower than those in a rectangular cross section bar having the same relative crack length and subjected to the same bending moment. Previously determined results for uniform tension are superimposed to obtain strain energy release rates for a circular cross section bar which is subjected simultaneously to a tensile load and a bending moment.  相似文献   

15.
The problem of an anti-plane interface crack in a layered piezoelectric plate composed of two bonded dissimilar piezoelectric ceramic layers subjected to applied voltage is considered. It is assumed that the crack is either impermeable or permeable. An integral transform technique is employed to reduce the problem considered to dual integral equations, then to a Fredholm integral equation by introducing an auxiliary function. Field intensity factors and energy release rate are obtained in explicit form in terms of the auxiliary function. In particular, by solving analytically a resulting singular integral equation, they are determined explicitly in terms of given electromechanical loadings for the case of two bonded layers of equal thickness. Some numerical results are presented graphically to show the influence of the geometric parameters on the field intensity factors and the energy release rate.  相似文献   

16.
The complete modelling of fatigue crack growth is still an industrial challenging issue for numerical methods. A new technique for the finite element modelling of elastic–plastic fatigue crack growth with unilateral contact on the crack faces is presented. The extended finite element method (X-FEM) is used to discretize the equations, allowing for the modelling of arbitrary cracks whose geometries are independent of the finite element mesh. This paper presents an augmented Lagrangian formulation in the X-FEM framework that is able to deal with elastic–plastic crack growth with treatment of contact. An original formulation, which takes advantages of two powerful numerical methods, is presented. Next the numerical issues such as contact treatment and numerical integration are addressed, and finally numerical examples are shown to validate the method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
This paper proposes a simple, efficient algorithm to trace a moving delamination front with an arbitrary and changing shape so that delamination growth can be analyzed by using stationary meshes. Based on the algorithm, a delamination front can be defined by two vectors that pass through any point on the front. The normal vector and the tangent vector for the local coordinate system can then be obtained based on the two delamination front vectors. An important feature of this approach is that it does not require the use of meshes that are orthogonal to the delaminations front. Therefore, the approach avoids adaptive re-meshing techniques that may create a large computational burden in delamination growth analysis. An interface element that can trace the instantaneous delamination front, determine the local coordinate system, approximate strain energy release rate components and apply fracture mechanics criteria has been developed and implemented into ABAQUS® with its user-defined element (UEL) feature. In this Part I of a two-part paper, the approach and its implementation are described and validated by comparison to results from existing cases having analytical solutions or other established FEA predictions.  相似文献   

18.
This paper studies the static fracture problems of an interface crack in linear piezoelectric bimaterial by means of the extended finite element method (X‐FEM) with new crack‐tip enrichment functions. In the X‐FEM, crack modeling is facilitated by adding a discontinuous function and crack‐tip asymptotic functions to the classical finite element approximation within the framework of the partition of unity. In this work, the coupled effects of an elastic field and an electric field in piezoelectricity are considered. Corresponding to the two classes of singularities of the aforementioned interface crack problem, namely, ? class and κ class, two classes of crack‐tip enrichment functions are newly derived, and the former that exhibits oscillating feature at the crack tip is numerically investigated. Computation of the fracture parameter, i.e., the J‐integral, using the domain form of the contour integral, is presented. Excellent accuracy of the proposed formulation is demonstrated on benchmark interface crack problems through comparisons with analytical solutions and numerical results obtained by the classical FEM. Moreover, it is shown that the geometrical enrichment combining the mesh with local refinement is substantially better in terms of accuracy and efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A new method called the crack-tip force method (CTFM) is derived for computing the energy release rate in delaminated beams and plates. In this method the delaminated plate is divided into two laminates on either side of the plane of delamination. The interaction forces, called crack-tip forces, between the sub-laminates at the crack-tip are computed. The energy release rate is expressed as a quadratic function of the crack-tip forces and the plate compliance coefficients. The CTFM is compared to the virtual crack closure technique (VCCT) as well as to a previously derived method called the strain energy density method using double cantilevered beam specimens as examples. The CTFM is found to be very efficient as the crack-tip forces are part of the solution of finite element analysis of delaminated plates, and they can be readily used to compute the point-wise energy release rate along the delamination front.  相似文献   

20.
In conventional cohesive zone models the traction-separation law starts from zero load, so that the model cannot be applied to predict mixed-mode cracking. In the present work the cohesive zone model with a threshold is introduced and applied for simulating different mixed-mode cracks in combining with the extended finite element method. Computational results of cracked specimens show that the crack initiation and propagation under mixed-mode loading conditions can be characterized by the cohesive zone model for normal stress failure. The contribution of the shear stress is negligible. The maximum principal stress predicts crack direction accurately. Computations based on XFEM agree with known experiments very well. The shear stress becomes, however, important for uncracked specimens to catch the correct crack initiation angle. To study mixed-mode cracks one has to introduce a threshold into the cohesive law and to implement the new cohesive zone based on the fracture criterion. In monotonic loading cases it can be easily realized in the extended finite element formulation. For cyclic loading cases convergence of the inelastic computations can be critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号