首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review describes our recent works on the preparation of Ni-alloy films deposited by electroless deposition as a diffusion barrier layer for ultra large-scale integration (ULSI) interconnects by using an all-wet process.In this process, we create a novel wet fabrication process including a self-assembled monolayer (SAM) as an attachment technique between diffusion barrier layer and a substrate. Our proposal process was applied to the substrates of SiO2/Si and both organic (methyl silsesquioxane) and inorganic (hydrogen silsesquioxane) low-k dielectrics. The key technique of this proposed process is using SAM as a catalyst trapping layer. The Ni-alloy films such as NiB were deposited on catalyzed SiO2 or low-k substrates. The electrolessly deposited NiB films were found to exhibit sufficient thermal stability and an acceptable barrier property for preventing Cu diffusion into the SiO2 and low-k dielectrics.  相似文献   

2.
An all-wet process was achieved using electroless deposition of barrier and Cu seed layers for fabrication of a high aspect ratio through-Si via (TSV). Formation of a thin barrier metal layer of Ni–B, Co–B and Co–W–B is possible using a Au nanoparticle (AuNP) catalyst, which is densely adsorbed on the SiO2 of the TSV sidewall. A silane coupling agent of 3-aminopropyl-triethoxysilane is effective for enhancement of the density of adsorption for AuNP. A conformal electroless Cu layer is deposited on the barrier layer by displacement plating without a catalyst. The adhesion strength between the electroless barrier layer and the SiO2 substrate is increased by annealing at 300 °C. These results strongly suggest that an all-wet process for the formation of Cu-filled TSV with a high aspect ratio is practically possible.  相似文献   

3.
Although the electroless plating method is known to be an effective method for obtaining fine wiring in particular, 1 mol hydrogen gas is generated during 1 mol Cu deposition, and voids are generated in the wiring when electroless Cu plating is applied to fine wiring. To avoid the hydrogen evolution, the possibility of performing electroless Cu plating was confirmed using an inexpensive FeII compound as a reducing agent. The bath contains CuSO4, FeSO4, NaCl, ethylenediamine, sodium citrate, polyethylene glycol (PEG), and 2,2′-bipyridine. Under optimal conditions, over 1.7 μm of copper deposit with a smooth surface was obtained after 3 h of plating, which did not contain iron as an impurity. The electrical resistivity of the copper film is about 3-4 μΩ cm corresponding to that of electroplated copper films.  相似文献   

4.
Thin Cu films of microelectronic quality and low electrical resistivity were created by electroless deposition (ELD) onto SiO2 surface modified first with self-assembled monolayer (SAM) of 3-aminopropyltrimethoxysilane (APTMS) and activated then by 5 nm gold nano-particles (AuNPs). The presence of highly oriented amino-terminated SAM was revealed by XPS and ToF-SIMS analyses. The Cu films were deposited in boron- and phosphorous-free tartrate/formaldehyde electrolyte. Controlling the deposition rate via the solution pH permitted a minimum value in resistivity ρ. XPS depth profile revealed that diffusion of Cu into SiO2 modified by APTMS did not take place after annealing at 220 °C, 4 h. Moreover, annealing resulted in the drop of electrical resistivity to ρ = 4 ± 0.4 μΩ cm for the films with the thickness of 35-100 nm. This value of ρ is several times smaller than those reported in literature for sub-100 nm Cu films deposited by electroless on different SAMs. It is speculated that nano-scale porosity and corrugated structure observed by HRTEM and AFM in the ELD Cu films contribute to the resistivity. The obtained results demonstrate a viable route for formation of low resistivity, sub-100 nm Cu films on dielectrics for microelectronic application.  相似文献   

5.
A CoNiFeB soft magnetic thin film with high saturation magnetic flux density (Bs) for use as a magnetic recording head core material or as a soft magnetic underlayer of a double perpendicular magnetic recording medium was prepared by electroless deposition. When the CoNiFeB alloy thin film was deposited on a evaporated Cu (100 nm thick)/glass substrate, the saturated magnetic flux density was found to increase up to 2.0 T by increasing the concentration of FeSO4. The coercivity (Hc) was found to decrease to 6 Oe while the saturated magnetic flux density was maintained higher than 1.8 T by optimizing the concentrations of tartaric acid and citric acid in the electroless plating solution. An X-ray diffraction (XRD) study showed that the intensity of the assigned peak in the bcc (1 1 0) of CoNiFeB film decreased as the concentration of tartaric acid was decreased. Moreover, the coercivity of the CoNiFeB film formed on a NiFe substrate exhibits lower coercivity than that formed on a Cu substrate.  相似文献   

6.
Recently, we have proposed a novel method to form NiSi contacts using electroless plating of Ni-alloys (NiP, NiWP, NiWB) on p-type Si(1 0 0) modified by aminopropyltriethoxysilane (APTS) activated with Pd-citrate [A. Duhin, Y. Sverdlov, Yishay Feldman, Y. Shacham-Diamand, Microelectron. Eng. 84 (2007) 2506]. In this work we focus on NiWB thin films that were formed by this method. Alkali metal free electroless plating was developed using dimethylamine-borane (DMAB) and tungstatic acid (H2WO4) as a reducing agent and a source of tungsten ions, respectively. Using this method we succeeded to receive relatively high tungsten concentration (maximum value of 19-21 at%) in the electroless deposited NiWB films with good adhesion to the Si-substrate. In this paper, the advantages of using the APTS activated with Pd-citrate for NiWB alloy deposition on the Si substrate is discussed.The chemically deposited NiWB samples were annealed for 1-2 h in vacuum (<10−6 Torr) forming the silicide layer. The annealing temperatures were 650 °C for NiWB alloys. X-ray diffraction (XRD) measurement confirmed the presence of NiSi phase after annealing. In addition the WSi2 phase was formed. The results are reported and summarized.  相似文献   

7.
In this study, a commercially available process of electroless nickel plating with co-deposited diamond powders was applied to a steel substrate as an intermediate layer prior to diamond deposition by MPECVD. The diamond films show excellent adherence, since they are strongly bounded to the diamond particles, deeply anchored into the electroless plated nickel matrix. A synergism effect of electroless nickel plating and MPECVD diamond growth are discussed. The electroless nickel plate which can be hardened itself by the precipitated phosphide phases after the heat treatment is an efficient diffusion barrier against the inter-diffusion of iron from the steel substrate and carbon from CH4. A more continuous and smoother diamond film can be formed on the outermost surface. The results of tribotesting indicated that each step in the process of composite formation significantly lowers the friction coefficient (μ), especially the secondary layer of electroless nickel plate (~ 1 μm) is particularly effective and possesses a steadily low value of μ, which has promise for tribological applications. The secondary nickel layer could enhance the adherence of diamonds in the metal matrix, and be responsible for the better continuity of the top diamond film.  相似文献   

8.
R.Z. Hu 《Electrochimica acta》2008,53(8):3377-3385
Thin film Sn-Cu anodes with high Cu content were prepared by electron-beam evaporation deposition using Cu substrate as current collector. Annealing, with the condition being determined by DSC, was used to improve the performance of these electrodes. X-ray diffraction (XRD), scanning probe microscopy (SPM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the structure and composition of the Sn-Cu thin film electrodes. Cyclic voltammetry and galvanostatical charge-discharge measurement were carried out to characterize the electrochemical properties of the as-deposited and annealed electrodes. ?-Cu3Sn intermetallic phase was formed and interface strength between deposited active materials layer and current collector was enhanced by annealing the as-deposited film under suitable condition. The annealed thin film electrode showed good cycleability and had no phase change during cycling. Although large initial capacity loss was found associated with SEI formation due to increase of surface roughness of annealed electrode, a stable discharge capacity near 300 mAh/g with Coulomb efficiency of about 96% was obtained at voltage window of 0.1-2.0 V and a discharge capacity of about 200 mAh/g and Coulomb efficiency of 97% were kept stable up to 30th cycle at a narrower voltage window of 0.2-1.5 V versus Li/Li+.  相似文献   

9.
An alternative approach for copper electroplating on Ta surface from a “single” injected bath is being described in this work. Copper electrodeposition over a thin TaN/Ta barrier was performed in a two-step process: (1) activation conducted by electrochemically reduction of Ta oxide from the TaN/Ta barrier at a negative potential of −2 V for a short period (“removal” step) and (2) copper electroplating performed in the invariable electrochemical bath by injecting a solution containing Cu-ions. Supplementary Cu plating is continued by shifting the applied potential to −1.2 V in the same electrolytic bath. It was also established that addition of low content (up to 10 ppm) dimercaptothiadiazole (DMcT) improves Cu nucleation and growth on Ta surface and allows a conformal features fillings. Copper layer deposited is characterized with an excellent adhesion to the Ta surface.  相似文献   

10.
High permittivity oxide thin film capacitors for RF components should be integrated on the chip to form a complete miniaturized module, with other semiconductor or thin film components such as inductors, isolation capacitors, and bias resistors. The quality factor (Q) values of the RF capacitors are strongly dependent on electrode conductivity. Alas the best conducting metals (e.g. Ag, Cu, Al) are not thermodynamically stable during deposition of high permittivity oxide films with high temperature and oxygen atmosphere. On the other hand, refractory metals (e.g. Mo, W) endure high temperatures, but are prone to oxidation. Therefore, a diffusion barrier is a prerequisite for integrating refractory metals to achieve a stable electrode structure.In this study both non-reactive and sacrificial diffusion barriers with Mo metallization were investigated on Si/SiO2 substrates. Also, noble metals (Au and Pt) as oxidation resistant materials were examined. Annealing at 650 °C was performed to the electrode stacks in an open-end air furnace and in vacuum with protective gas.The chemically inert materials Au and Pt failed to endure the high annealing temperature. Au became extremely rough and cracks appeared. Massive grain growth and adhesion loss occurred with Pt film. Mo electrode withstood the oxidizing ambient conditions with a sacrificial Si or Al–Ti diffusion barrier. Moderate increase in surface roughness was observed after the annealing due to oxidation. Also, thermally stable AlN, Si3N4, and SiO2 diffusion barriers were able to block oxygen from the Mo electrode.  相似文献   

11.
Impedance spectra of potentiodynamically formed polyaniline (PANI) and poly(o-ethoxyaniline) (POEA), thin film modified Pt electrodes measured at potentials of conductive, emeraldine form in H2SO4 electrolyte solution were reported. Specific features of spectra obtained for films of different voltammetric charge densities were modelled and interpreted according to “homogeneous” and “distributed” impedance models. The values of charging capacitances of different PANI and POEA films were found independent of the model used. Charging of polymer films was in terms of both models controlled by charge transport processes being ion diffusion and migration in the first case, and polymer film and ionic conductivities in the second case. Distortion from Warburg-like response observed for both polymer films was explained by either differences in relaxation times of diffusion and migration processes, or by impedance of ionic channels with “anomalous” frequency dispersion. There were some discrepancies between theories and results suggesting that “homogeneous” model was more appropriate for POEA films while “distributed” model was more appropriate for PANI films, at least if both films were formed and measured in presently described conditions.  相似文献   

12.
TiO2, SiO2, hydroxyapatite (HA), TiO2–HA and SiO2–HA thin films with good biocompatibility were grown on Ti–6Al–4V (coded as TC4) substrate by sol–gel and dip-coating processes from specially formulated sols, followed by annealing at 500 °C. The chemical states of some typical elements in the target films were detected by means of X-ray photoelectron spectroscopy (XPS). High-resolution scanning electron microscopy (SEM) is applied to characterize the surface and cross-sectional morphologies of obtained films. Various phases of the films were characterized by XRD. The tribological properties of thin films sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As a result, the target films were obtained. Compared with the TC4 substrate, all the sol–gel ceramic films are superior in resisting wear. Among all, HA film shows the best resistance while SiO2 film shows the worst wear resistance both under higher (3 N) and lower load (1 N). TiO2 shows a good wear resistance under lower load but higher load. Compared with TiO2, the wear resistance of the dual film TiO2–HA can be improved under 3 N but deteriorated under 1 N. Compared with SiO2, the wear resistance of SiO2–HA is improved both under 3 N and 1 N. Compared with HA, the wear resistances of dual films are deteriorated both under 3 N and 1 N. Under 0.5 N, a very long wear life for TiO2–HA is also obtained, illustrating that the lower wear resistance of dual films is closely related to the applied load. SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characterized by abrasive wear. Differently, abrasion, plastic deformation and micro-crack dominate the wear of ceramic films. The superior friction reduction and wear resistance of HA films are greatly attributed to the slight plastic deformation of the film. Sol–gel is a potential method being applied to implant materials for wear protection according to proper process designs. The single HA film and the dual TiO2–HA film is suggested for biomedical application from the point of view of wear protection.  相似文献   

13.
The rapid thermal annealing (RTA) process was employed to obtain crystalline LiCoO2 thin films. XRD analyses of the LiCoO2 thin film show increased crystallinity with an increase in the RTA time. The Auger electron spectroscopic analysis of the LiCoO2 film strongly suggests that the RTA process is more advantageous to obtain a stable inter layer between the substrate and the deposited film and between each deposited layer than the conventional annealing process. All-solid-state thin film cells composed of Li/lithium phosphorous oxynitride (Lipon)/LiCoO2 systems were fabricated using the LiCoO2 cathode treated with RTA. The optimum condition of RTA would be 900 s at 650 °C, which exhibited a good rate capability for high power applications. Two cells were connected in parallel to obtain a higher discharge current, and they showed a specific capacity of 38.4 μAh cm−2 μm−1 even at a 25C rate (current density: 7.96 mA cm−2).  相似文献   

14.
Crystallization and magnetic property of Fe2O3 nanoparticle precipitated in SiO2 matrix was investigated. Fe2O3/SiO2 nanocomposite thin film was obtained by annealing of the amorphous Fe-Si-O thin film deposited by RF-magnetron sputtering of (α-Fe2O3)1−x/(SiO2)x composite targets. The Fe2O3 crystallite size increased with decreasing SiO2 area ratio, x of the target and increasing annealing temperature. ?-Fe2O3 with the crystallite size of 20-30 nm was obtained after annealing the film deposited in SiO2 area ratio, x = 0.33-0.42 at 900 °C. Lower SiO2 area ratio (x) than 0.25 and higher annealing temperature resulted in precipitation of α-Fe2O3 with the larger crystallite size than 40 nm. In the case of SiO2 area ratio, x ≥ 0.50, the annealed film was amorphous and showed higher magnetization and smaller coercivity due to the precipitation of very small crystalline γ-Fe2O3. The ?-Fe2O3/SiO2 composite thin film showed ferromagnetic hysteresis with coercive force of 0.14 T.  相似文献   

15.
In this paper, a multilayer barrier thin film, based on polyvinylidene difluoride (PVDF)–silicon dioxide (SiO2), has been fabricated on a PET substrate through a novel method of joint fabrication techniques. The inorganic SiO2 thin film was deposited using a roll-to-roll atmospheric atomic layer deposition system (R2R-AALD), while the organic PVDF layer was deposited on the surface of SiO2 through the electrohydrodynamic atomization (EHDA) technique. The multilayer barrier thin films exhibited very good surface morphology, chemical composition, and optical properties. The obtained values for arithmetic surface roughness and water contact angle of the as-developed multilayer barrier thin film were 3.88 nm and 125°, respectively. The total thickness of the multilayer barrier thin film was 520 nm with a high optical transmittance value (85–90%). The water vapor transmission rate (WVTR) of the barrier thin film was ~?0.9?×?10?2 g m?2 day?1. This combination of dual fabrication techniques (R2R-AALD and EHDA) for the development of multilayer barrier thin films is promising for gas barrier applications.  相似文献   

16.
Electroless Cu was investigated on refractory metal, W and TaNX, and Ir noble metal substrates with a plasma-assisted atomic layer deposited palladium layer for the potential back-end-of-the-line (BEOL) metallization of advanced integrated devices. The sodium and potassium-free Cu electroless bath consisted of: ethylenediamine tetraacetic acid (EDTA) as a chelating agent, glyoxylic acid as a reducing agent, and additional chemicals such as polyethylene glycol, 2,2′-dipyridine and RE-610 as surfactant, stabilizer and wetting agent respectively. The growth and chemical characterization of the Cu films was carried out with a field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS). Group VIII metals such as Pt, Pd, etc., are stable in the electroless bath and catalytic towards the oxidation of glyoxylic acid and therefore work well for the electroless deposition of Cu. From RBS analysis, the amount of carbon and oxygen in Cu films were less than 1-3%. The Cu films were electroless deposited at 45-50 °C on patterned tantalum nitride with plasma-assisted atomic layer deposited (PA-ALD) Pd as a catalytic layer. Electroless Cu trench fill was successful with ultrasonic vibration, RE-610, and lowering the temperature to 45-50 °C on TaNX with the PA-ALD Pd catalytic layer.  相似文献   

17.
ZrN diffusion barrier films were prepared by DC reactive magnetron sputtering under different negative substrate bias. The composition, microstructure, resistivity and diffusion barrier properties of ZrN films, with respect to substrate bias, were studied by means of X-ray diffraction, electron probe microanalyzer, Auger electron spectroscopy, and four point probe method. Results showed that the deposition rate and impurity oxygen content of ZrN films were substantially influenced by the resputtering effects due to the ion bombardment on the film surface. The competition between surface energy and strain energy made the preferred orientation of ZrN films change from (1 1 1) to (2 0 0) and then back to highly (1 1 1) preferred orientation as a function of substrate bias. The application of negative substrate bias could effectively decrease the electrical resistivity due to the decrease of impurity oxygen content and the densification of films, resulting from the moderate-energy ion irradiation. The biased ZrN films could successfully be used as a diffusion barrier layer, between Cu and SiO2, even up to the high temperature of 800 °C for 30 min.  相似文献   

18.
The paper reports on the investigation of the electrochemical behavior of a thin gold film electrode coated with silicon dioxide (SiOx) layers of increasing thickness. Stable thin films of amorphous silica (SiOx) were deposited on glass slides coated with a 5 nm adhesion layer of titanium and 50 nm of gold, using plasma-enhanced chemical vapor deposition (PECVD) technique. Scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical behavior of the interfaces. In the case of SECM, the influence of the SiOx thicknesses on the electron transfer kinetics of three redox mediators was investigated. Normalized current-distance curves (approach curves) were fitted to the theoretical model in order to find the effective heterogeneous first order rate constant (keff) at the sample. EIS was in addition used to confirm the diffusion barrier character of the SiOx interlayer.  相似文献   

19.
Biomorphic SiC composites were fabricated by infiltration of liquid Si into a preform fabricated from medium-density fiberboard (MDF). The phase compositions, microstructures, oxidation behaviors, and ablation properties of the composites were investigated. The composites were oxidized at elevated temperatures (up to 1450 °C) in air to study their oxidation behavior. Pores and cracks initially formed from the oxidation of residual carbon, followed by melting of residual Si. The ablation resistance of a composite was gauged using an oxy-acetylene torch. The formation of a SiO2 layer by the oxy-acetylene flame improved the ablation resistance because molten SiO2 spread over the ablated surface and partially sealed the pores, thus acting as an effective barrier against the inward diffusion of oxygen.  相似文献   

20.
Copper electrochemical deposition on titanium with a ruthenium seed layer was investigated. The chemicals for the acid-bath ruthenium electrochemical deposition were ruthenium(III) chloride hydrate (RuCl3·3H2O), hydrochloric acid (HCl), sulfamic acid (NH2SO3H), and polyethylene glycol. The chemicals for the acid-bath copper electrochemical depositions were copper(II) sulfate hydrate (CuSO4·5H2O), sulfuric acid (H2SO4), and polyethylene glycol. Results were analyzed by field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS). Ruthenium thin film of ∼30 nm thickness, with equiaxial grains <10 nm, was deposited, on a blanket Ti with a root mean square roughness of 8.3 nm, at 2 V for 90 s. XPS and RBS analyses showed the presence of metallic Ru. The Ti substrate was found stable with respect to ECD of Ru but the Ru/Ti bilayer was not found stable in the Cu acid bath, resulting in the diffusion of Ti into Ru film. The depth profiling studies indicates that Ru film thickness ca. 1.4 nm and deposition time of 10 s can act as a good seed layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号