首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
为了提高纯电动汽车的再生制动能量回收率,本文采用模糊逻辑控制策略.通过建立Mamdani型模糊控制器,确定了再生制动力和机械制动力之间的比例分配.同时考虑到制动的安全性和稳定性,提出了前后轮之间的制动力按照理想制动力分布曲线分配.在Matlab/Simulink环境下搭建模糊逻辑控制策略的模型,并把该模型嵌入到ADVISOR仿真环境中,结合典型道路循环工况进行仿真实验,实验结果表明,采用模糊逻辑控制策略之后,电池SOC提升了9.3%左右,整车系统的效率提升了7.2%,再生制动的效率提升了36.7%,这表明模糊逻辑控制策略能更好地实现能量的回收利用,延长电动汽车的续驶里程.  相似文献   

2.
针对负载隔离式电动汽车能量利用率低的问题,本文主要对负载隔离式电动汽车再生制动控制策略进行研究。通过对负载隔离式电动汽车制动动力学和ECE法规进行分析,得出满足条件的制动力分配系数及制动力分配的上下限,据此提出基于制动强度划分的再生制动控制策略。在Matlab/Simulink搭建再生制动控制模型,并将模型嵌入到Advisor中进行仿真分析。仿真结果表明,与原控制策略相比,在CYC_NEDC工况下行驶时,汽车制动时电机输出功率提高,电机损失功率减少,电机输出的瞬时电流增大,说明该再生制动控制策略明显提高了电动汽车制动能量的回收效率。该控制策略为负载隔离式电动汽车进一步提高能量利用率提供了理论基础。  相似文献   

3.
EV再生制动系统的建模与仿真   总被引:4,自引:1,他引:3  
电动汽车的一个重要的优点就是它具有再生制动能力,可以将制动过程中的动能回收,节约能源并增加汽车的续驶里程。文中对汽车中可再生制动的能量进行了分析,并提出了在电动汽车仿真中如何实现再生制动的建模和仿真。最后给出了仿真结果和再生制动系统在能量传递过程中的能量损失情况。  相似文献   

4.
针对前后轮独立驱动纯电动汽车再生制动过程的控制问题,提出了一种基于多约束优化的再生制动控制策略。通过对汽车动力学的分析,并考虑能量回收所涉及的电机、电池组特性的影响,在保证制动过程安全可靠的前提下,结合再生功率流路径上各部件的运行效率和边界约束,以制动系统总效率最大化为目标优化前后电机的再生制动转矩分配,达到最大化回收制动能量的目的,并与原车的简单逻辑控制策略进行仿真对比,结果表明了该控制策略的有效性。  相似文献   

5.
提出了混合动力电动汽车再生制动能量回收的一种模糊逻辑策略,在混合动力电动车制动过程中,合理地分配再生制动力矩和摩擦制动力矩,在保证制动安全性和舒适性的前提下,尽可能多地发挥电机的再生制动特性,以便将更多的动能转化为电能储存在电池装置中。在Matlab/Simulink环境下搭建模糊逻辑策略的模型,并把该模型嵌入到ADVISOR仿真环境中,仿真观察SOC(state of charge)的变化曲线,与ADVISOR中原有的再生制动能量回收策略作比较,仿真结果表明,所给出的模糊逻辑策略能更好地实现能量的回收。  相似文献   

6.
为了提高四轮轮毂电机驱动的电动汽车续航里程,提出了综合考虑理想制动力分配和电机工作特性的再生制动控制策略。通过分析传统汽车理想制动力分配策略,综合考虑电机发电工作特性,在保证整车制动性能的基础上,通过减少机械制动的参与使整车前后轴电机均处于更好的发电状态,从而在保证整车制动效能的同时,回收更多的制动能量。通过CarSim和Matlab/Simulink商用软件联合仿真对提出的控制策略进行了仿真验证。仿真结果表明:该控制策略能够通过有效地分配前后轴电机制动力和机械制动力,从而获得较好的制动能量回收效果。  相似文献   

7.
为提高纯电动汽车再生制动能量回收率,采用以总制动力需求、车速以及电池SOC为输入,以电机制动力系数为输出的mamdani型模糊控制器,确定电机制动力与机械制动力之间的比例分配;同时考虑汽车制动的安全性和稳定性,提出了采用理想制动力分配方法对前、后轮制动力进行分配.在ADVISOR上建立了模糊控制算法的仿真模型,并结合典型道路工况CYC_UDDS进行仿真,通过与ADVISOR自带的策略以及文献[7]提出的模糊控制策略的仿真结果进行对比,结果表明:采用改进的模糊控制算法后,电池SOC提高了2%,制动能量回收效率提高了33.7%,整车系统的效率提高了3.1%,表明文中提出的改进的模糊控制算法能提高纯电动汽车制动能量回收的效果,有效延长纯电动汽车的续航里程.  相似文献   

8.
为提高混合动力汽车再生制动能量利用率与制动安全性,进一步提升续驶里程,提出一种基于多智能体的再生制动协同控制方法。构建交互式协同控制再生制动系统智能体及子智能体模型,系统智能体通过接受制动工况信息将蓄电池荷电状态(State of Charge,SOC)发送给蓄电池智能体,将再生制动分配系数与制动强度系数发送给车轮智能体和电机智能体;各子智能体以自身最高工作效率为目标,结合各自运行工况与其他智能体进行交互并将各自的任务实时反馈给系统智能体。最后在MATLAB/Simulink中建模,在CYC_UDDS工况下进行仿真验证。结果表明,电机制动力与机械制动力得到合理分配,充电电流控制在合理范围内,制动过程蓄电池SOC增加了近23%、制动能量利用率达17.43%,验证了所提方法的可行性和有效性。  相似文献   

9.
根据欧洲经济委员会(ECE)法规曲线、理想制动力分配I曲线以及f曲线明确了前后轴制动力分配范围,结合典型的再生制动控制策略,对前后轴制动力以及机电制动力进行分配并优化,设计了一种基于不同附着系数路面的多模式模糊控制策略,该模糊控制以车速v、制动强度z和电池剩余电量(SOC)为输入,以电机制动比例K为输出,通过将该基于模糊控制的Simulink模型与Cruise整车模型进行联合仿真。结果表明:本文提出的控制策略不但能高效地回收制动能量,提高电动汽车续航里程,而且能进一步增强制动的安全性和稳定性。  相似文献   

10.
为提高纯电动汽车的制动能量回收率,同时保证汽车制动稳定性与安全性,基于理想制动力分配曲线与模糊逻辑控制原理,制定了某前驱纯电动汽车制动能量回收控制策略。以制动强度、车速和电池荷电状态(SOC)为输入变量,再生制动力分配系数k为输出变量,设计了模糊控制器。在MATLAB/Simulink环境中构建制动能量回收控制策略模型,利用AVL CRUISE建立整车模型,并进行了联合仿真。在FTP75循环工况下仿真的结果表明,制定的制动能量回收控制策略在保证制动稳定性的同时,使制动能量回收率得以显著提高。  相似文献   

11.
静液传动混合动力车辆再生制动研究   总被引:3,自引:1,他引:2  
为了使发动机工作在最佳效率区并可在车辆减速过程中回收制动能量,以提高车辆的燃油经济性,对并联式静液传动混合动力车辆(PHHV)主要部件的设计准则进行了研究,结合静液传动能量再生系统功率密度大的特点,分析了静液传动混合动力车辆在城市行驶工况下的制动特征,针对PHHV提出了一种新的再生制动控制策略.仿真和试验结果表明:所设计的驱动系统参数匹配较为合理,液压再生制动控制系统可以合理地分配液压再生制动转矩和传统摩擦制动转矩的比例关系,在确保制动安全性的前提下高效地回收制动动能.  相似文献   

12.
Urban bus has to start and stop frequently due to typical urban traffic conditions, which, however, can be put to good use by regenerative braking. Regenerative braking is a key technology which not only improves vehicle’s fuel economy in mild braking, but also ensures vehicle safety in emergency braking conditions. Because of the inherent limitations of traditional braking system in recycling energy, it is necessary to change its structure to decouple the brake pressure and the brake pedal force. To solve this problem, a compromise design combining traditional pneumatic braking system with brake-by-wire (BBW) system is adopted in this paper on parallel hybrid electric bus. With the transformed braking system, an efficient coordinated control strategy is proposed to solve the problem caused by the different response speeds of pneumatic braking and regenerative braking. The proposed control strategy is carried out, where the road condition varies and different control methods are adopted. Results show that the adopted braking system and the proposed coordinated control strategy are suitable for different roads, and effective in recovering energy and ensuring vehicle safety. At the same time, shorter braking distance and better control of slip ratio verify the performance of MPC compared with a logical threshold-based control. Therefore, this study may offer a useful theoretical reference to the choice of braking system and braking control strategy design in hybrid electric vehicle (HEV).  相似文献   

13.
轮边驱动液压混合动力车辆再生制动控制策略   总被引:2,自引:2,他引:0  
针对如何有效利用再生制动节约能量,合理分配各轮再生制动力,以及协调再生与摩擦制动的关系等影响混合动力车辆节能效果及制动安全的关键问题,以轮边驱动液压混合动力车辆为原型,根据垂直载荷变化、制动安全性、能量再生效率和储能元件充能状态等因素,提出了基于后向建模方法的轮边驱动液压混合动力车辆制动控制策略。通过在Matlab/Simulink环境下建立模型仿真进行验证,得到了典型工况下车速与液压蓄能器压力变化、再生制动能量回收的关系。结果表明,该控制策略能够在保证制动安全的前提下有效提高能量再生效率。  相似文献   

14.
FSAE电动赛车再生制动系统开发   总被引:1,自引:0,他引:1  
为提高大学生方程式(FSAE)纯电动赛车耐久赛成绩,开发一套适用于FSAE电动赛车的再生制动系统.对ADVISOR软件二次开发,通过修改整车模型、车轮模型、驱动控制模型及电池模型等,建立适用于FSAE纯电动赛车的仿真平台;为保证再生制动系统的稳定性,降低赛车控制器和传感器精度对系统的影响,提出一种后轴并联制动力分配控制策略,并进行了耐久赛工况分析;对再生制动系统控制器进行软硬件开发,并进行实车试验.仿真及试验中再生制动能量回收率分别达到20.89%和19.07%,所设计的再生制动系统可有效回收FSAE纯电动赛车的制动能量,提高耐久赛成绩.  相似文献   

15.
针对高效利用电动车能量的问题,提出了一种基于制动强度的电动汽车能量回收控制方法.基于车辆制动的理想曲线和ECE曲线,结合制动强度将制动情况分成四种类型并给出了每种类型所需制动力.基于模糊控制理论提出了机械制动力和电机制动力分配比例的模糊控制模型,建立了再生制动比例与车辆行驶速度、制动力和电池电荷量三个指标之间的模糊模型.在NEDC工况上进行了实验,结果表明,本文方法在回收能量数量、能量回收率和能量效率等方面都具有更好的性能,能够使电动汽车制动策略更加科学节能.  相似文献   

16.
地铁车辆启动制动频繁,车辆再生制动的电能利用对地铁运营的节能作用不可忽视。在分析车辆运行工况、制动能量的基础上,对车辆再生制动电能的利用和储存问题进行了深入研究,提出再生制动电能用于列车辅助电源供电,并给出了储能方法及控制策略,可有效降低地铁运营能耗,减小环控压力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号