首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
设计合成了3种酸性离子液体[BSO3HMIM]HSO4、[BSO3HMIM][PTSA]、[BMIM]HSO4,考察酸性离子液体对大豆油和甲醇酯交换制备生物柴油的催化效果。以筛选出的酸性离子液体[BSO3HMIM]HSO4为催化剂,在微波辅助下,考察了醇油摩尔比、催化剂用量、反应温度和反应时间对生物柴油收率的影响。结果表明:当醇油摩尔比为10∶1,催化剂用量为8%,反应温度为120℃,反应时间为60 min,微波功率为320 W时,生物柴油收率可达95.8%;离子液体[BSO3HMIM]HSO4循环使用6次后,生物柴油收率没有明显降低,保持在90%以上。  相似文献   

2.
制备了B酸离子液体[HSO3-bpy]HSO4,并应用于催化麻疯油酯交换反应制备生物柴油。通过正交试验考察了催化剂用量、醇油摩尔比、反应温度、反应时间4个因素对反应的影响,同时优化了生物柴油合成反应条件。结果显示:反应温度为140℃、催化剂用量为油脂质量的6%、醇油摩尔比为15∶1、反应6h,转化率达到90.2%,催化剂在优化条件下重复使用6次后其催化活性无明显变化,且产品质量达到美国ASTM生物柴油标准的相关指标。  相似文献   

3.
Br?nsted酸性离子液体催化合成辛酸甘油酯的研究   总被引:1,自引:1,他引:0  
以双磺基的Brnsted酸性离子液体1-磺酸丁基-3-甲基咪唑硫酸氢盐[MIm(CH2)4SO3H][HSO4)]催化辛酸与甘油酯化合成低热量的中碳链三酰甘油,研究了催化剂用量、酸醇物质的量比、反应温度、反应时间对酯化反应的影响,在最优条件下考查了工艺稳定性及催化剂重复使用性能。结果表明,[MIm(CH2)4SO3H][HSO4]具有较高的酯化催化活性和重复使用性能。优化的合成辛酸甘油酯的工艺条件为:辛酸甘油物质的量比为3.5∶1,催化剂用量为底物质量的1%,反应温度160℃,反应时间6 h。在此条件下,酯化率达85%,三酰甘油质量分数达到80%。催化剂重复使用5次,仍保持90%的催化活性。  相似文献   

4.
以双磺基的Brφnsted酸性离子液体1-磺酸丁基-3-甲基咪唑硫酸氢盐[MIm( CH2) 4SO3H][ HSO4])催化辛酸与甘油酯化合成低热量的中碳链三酰甘油,研究了催化剂用量、酸醇物质的量比、反应温度、反应时间对酯化反应的影响,在最优条件下考查了工艺稳定性及催化剂重复使用性能.结果表明,[ MIm(CH2)4SO3H][HSO4]具有较高的酯化催化活性和重复使用性能.优化的合成辛酸甘油酯的工艺条件为:辛酸甘油物质的量比为3.5∶1,催化剂用量为底物质量的1%,反应温度160℃,反应时间6h.在此条件下,酯化率达85%,三酰甘油质量分数达到80%.催化剂重复使用5次,仍保持90%的催化活性.  相似文献   

5.
微波辐射下离子液体[Bmim]HSO4催化葵花籽油制备生物柴油   总被引:2,自引:0,他引:2  
生物柴油是绿色可再生能源。研究了微波辐射下离子液体[Bmim]HSO4催化葵花籽油与甲醇通过酯交换反应制备生物柴油,考察了催化剂用量、微波功率、醇油摩尔比和反应时间对酯交换反应的影响。试验结果表明,当醇油摩尔比为12:1、催化剂用量(催化剂与油的质量比)为7%、微波功率为300W、反应时间为35min时,生物柴油的收率可以达到98.9%。  相似文献   

6.
碱性离子液体催化棉籽油制备生物柴油的工艺研究   总被引:2,自引:0,他引:2  
应用碱性离子液体[Emim]OH催化棉籽油制备生物柴油,考察了醇油比、催化剂用量、反应温度、反应时间对生物柴油收率的影响;正交试验确定[Emim]OH催化工艺条件为:醇油摩尔比6∶1、催化剂用量3.5%、反应时间50 min、反应温度55℃。在该优化条件下,甲酯混合物收率高于90%,催化剂[Emim]OH重复使用6次没有明显消耗,催化性能稳定。  相似文献   

7.
合成了5种新型咪唑类和吡啶类双核酸性离子液体,并考察了其催化餐饮废油酯交换制备生物柴油的性能。实验表明,咪唑类双核酸性离子液体具有很好的催化活性,其中[MIM]2C3[HSO4]2催化活性最好。在以[MIM]2C3[HSO4]2为催化剂条件下,通过单因素实验和正交实验考察了醇油摩尔比、反应温度、反应时间和催化剂用量对酯交换反应的影响,并考察了双核酸性离子液体的稳定性。结果表明:在醇油摩尔比45∶1、反应温度170℃、反应时间2 h和催化剂用量为餐饮废油质量8%的条件下,生物柴油产率可达95.8%,并且该双核酸性离子液体的稳定性良好,循环使用6次后其催化活性没有明显降低。  相似文献   

8.
合成了酸性离子液体[HNMP]CH3SO3,并用于催化菜籽油酯交换制备生物柴油。采用响应面法对离子液体[HNMP]CH3SO3催化菜籽油酯交换制备生物柴油的工艺参数进行优化,获得的最佳反应条件为:反应温度100℃,醇油摩尔比9∶1,催化剂用量10%,反应时间12 h。在最佳条件下,生物柴油转化率为84. 8%。该离子液体有较好的稳定性,循环使用4次后生物柴油转化率仍可达到79. 6%。  相似文献   

9.
《粮食与油脂》2015,(10):50-53
采用两步法合成了咪唑阴离子型碱性胆碱类离子液体Ch Im,以麻疯树果油为原料,考察了其对麻疯树果油和甲醇酯交换制备生物柴油的催化性能。通过单因素实验,考察了反应温度、反应时间、催化剂用量和醇油摩尔比对生物柴油产率的影响。研究表明,当反应温度T=65℃,反应时间t=3 h,催化剂用量为4%,醇油摩尔比为6∶1时,生物柴油产率可达94.7%,且离子液体易于分离回收,重复使用性能较好。  相似文献   

10.
《粮食与油脂》2017,(10):50-53
通过两步法合成了功能化酸性离子液体[HSO_3-pPy]HSO_4,在微波协同条件下,以其作为酯交换反应的催化剂,催化制备生物柴油研究。采用单因素试验,考察了微波功率、醇油摩尔比、离子液体[HSO_3-pPy]HSO_4用量、反应温度和时间对生物柴油收率的影响。结果表明,生物柴油的最佳制备工艺条件为微波功率400 W、醇油摩尔比12∶1、催化剂[HSO_3-pPy]HSO_4用量5%、反应温度70℃、反应时间45 min,在最佳制备工艺条件下,生物柴油收率可达95.1%。同时,考察了催化剂[HSO_3-pPy]HSO_4的重复使用性能,重复使用6次后,催化剂的催化活性没有明显降低。  相似文献   

11.
制备了3种杂多酸离子液体催化剂[PyPS]H_2PW_(12)O_(40)、[PyPS]_2HPW_(12)O_(40)和[PyPS]3PW_(12)O_(40),用于催化酯交换制备生物柴油,其中杂多酸离子液体[PyPS]H_2PW_(12)O_(40)的催化活性最高。采用单因素试验,考察了[PyPS]H_2PW_(12)O_(40)催化酯交换制备生物柴油时,醇油摩尔比、催化剂[PyPS]H_2PW_(12)O_(40)用量、反应温度和时间对生物柴油收率的影响,结果表明,当醇油摩尔比(甲醇/大豆油)为12,催化剂[PyPS]H_2PW_(12)O_(40)用量为6%,反应温度为100℃,反应时间为6 h时,生物柴油收率94.8%。重复使用性能试验表明,杂多酸离子液体[PyPS]H_2PW_(12)O_(40)重复使用6次后,生物柴油收率仍可达90.5%。  相似文献   

12.
固体超强酸SO42-/Fe2O3催化制备生物柴油的研究   总被引:3,自引:0,他引:3  
采用沉淀-浸渍法制备固体超强酸SO42-/Fe2O3催化剂,并将该催化剂用于生物柴油的制备。研究了沉淀温度、焙烧温度对催化剂性能的影响,用FTIR对催化剂进行了表征。考察了催化剂用量、醇油摩尔比、反应温度、反应时间对生物柴油收率的影响。实验表明,SO42-/Fe2O3固体超强酸对制备生物柴油具有较高催化活性,冰水浴中沉淀、500℃焙烧效果最佳。SO42-/Fe2O3固体超强酸催化制备生物柴油的最佳工艺条件为:催化剂用量为原料油质量的2%,醇油摩尔比12∶1,反应温度220℃,反应时间8h。在最佳条件下,生物柴油收率可达80%以上。催化剂重复使用5次(40h),生物柴油收率仍在70%以上。  相似文献   

13.
采用两步法合成了一种新型双核碱性功能化离子液体,在其作为催化剂时,考察了其对甲醇和光皮树果油酯交换制备生物柴油的催化性能。结果表明:在双核碱性离子液体催化下,当反应温度为60℃,醇油摩尔比为12∶1,离子液体用量为原料油质量的3%,反应时间为3.5 h时,生物柴油产率可达95.5%。并且,双核碱性离子液体MC4Im具有较好的重复使用能力,循环使用5次后,生物柴油产率无明显变化。该方法制备的生物柴油的主要指标基本达到国家生物柴油标准。  相似文献   

14.
微波辐射离子液体[Bpy]HSO_4催化葵花籽油制备生物柴油   总被引:1,自引:0,他引:1  
生物柴油是一种绿色可再生能源。该文报道微波辐射下离子液体[Bpy]HSO4催化葵花籽油与甲醇通过酯交换反应制备生物柴油,以正交法对制备工艺条件进行优化,考察醇油物质量比、催化剂用量、微波功率和反应时间对酯交换反应影响。实验结果表明,当醇油物质量比为10∶1、催化剂用量(催化剂与油质量比)为5%、微波功率为400W、反应时间为45min时,生物柴油转化率可达96.2%;与传统加热方式相比,采用微波辐射加热方式,反应时间明显缩短,能耗减少。  相似文献   

15.
为高效环保地制备生物柴油,通过三步法合成了一系列HSO4HSO3-C3\[MIM\]Cn\[MIM\]C3-HSO3HSO4(简写为CnMSS,n=2~6)双咪唑磺酸型离子液体,对其催化酯交换反应的性能进行了探究,并对离子活性最强的离子液体进行了核磁共振表征。以该离子液体为催化剂,通过单因素实验对三油酸甘油酯模型反应条件进行优化,并在此基础上采用正交实验优化煎炸废弃油制备生物柴油的工艺条件,同时对生物柴油产品进行了红外光谱和核磁共振表征。结果表明:离子液体C5MSS的催化性能最强;在醇油摩尔比18∶?1、反应时间8 h、反应温度100?℃、催化剂用量8%(以三油酸甘油酯质量计)条件下,油酸甲酯产率为91.18%,且该离子液体重复使用7次油酸甲酯产率仍然能够达到83%以上。煎炸废弃油制备生物柴油的最优工艺条件为醇油摩尔比18∶?1、反应温度80?℃、反应时间9 h、催化剂用量10%(以煎炸废弃油质量计),在此条件下生物柴油的产率可达9860%。红外光谱和核磁共振表征结果表明反应生成了脂肪酸甲酯,且酯交换反应比较彻底。  相似文献   

16.
采用绿色溶剂离子液体(N-丁基吡啶四氟硼酸盐,[BPy]BF_4)代替传统的液体酸、碱催化剂,催化大豆油与甲醇的酯交换反应制备脂肪酸甲酯。考察了离子液体的用量、醇油摩尔比、反应温度、反应时间等因素对酯交换反应转化率的影响。优化出最适宜的操作条件为:催化剂用量为原料油质量的3%、醇-油摩尔比为3:1、反应时间为4h、反应温度为64°C,在该条件下生物柴油的转化率可达96.12%。而且在同样的反应条件下,[BPy]BF_4可重复使用3次,仍有较高的催化活性。  相似文献   

17.
采用传统液体酸浓H2SO4一步法催化棉籽酸化油与甲醇的酯化反应制备生物柴油,考察了醇油质量比、催化剂用量、反应时间对酯化率的影响。结果表明,酯化反应最佳反应条件为:醇油质量比1∶1,催化剂用量2.5%(占油质量),反应时间10 h;在此条件下酯化率为92.17%。制得的生物柴油与我国0#柴油标准(GB/T 19147—2003)的主要性能指标接近。  相似文献   

18.
生物柴油是一种新型无污染的可再生能源。本文探讨了碱性离子液体[bmim]OH催化下,以葵花籽油与甲醇反应生成生物柴油的工艺条件。通过正交试验法考察了醇油物质的量比、催化剂用量、反应温度和反应时间对生物柴油产率的影响。确定了碱性[bmim]OH催化下制备生物柴油的最佳工艺条件:醇油物质的量比为8:1,催化剂用量为葵花籽油质量的7%,反应温度65℃,反应时间5h,生物柴油的转化率可达96.4%。  相似文献   

19.
碱性离子液体[Bmim]OH催化菜籽油制备生物柴油   总被引:4,自引:0,他引:4  
研究合成了具有碱性功能的离子液体[Bmim]OH,并用其催化菜籽油酯交换反应制备生物柴油,考察了醇油摩尔比、反应温度、反应时间和离子液体用量对酯交换反应的影响及离子液体的稳定性。结果表明:在n(甲醇)∶n(菜籽油)=16∶1,反应温度150℃,反应时间4 h和离子液体用量为菜籽油质量6%的条件下,生物柴油收率可达96.2%,并且该离子液体的稳定性良好,循环使用5次催化性能没有明显降低。  相似文献   

20.
《粮食与油脂》2015,(12):15-18
设计合成4种离子液体[HSO_3–pmim]HSO_4、[Hnmp]HSO_4、[Hmim]HSO_4和[HPy]HSO_4,以它们为催化剂,采用肉桂酸和植物甾醇酯化制备肉桂酸植物甾醇酯,筛选出催化性能最好的离子液体[HSO_3–pmim]HSO_4,进而考察了酸醇比、反应时间、反应温度和离子液体用量对酯化率的影响。研究表明,在离子液体[HSO_3–pmim]HSO_4催化作用下,当酸醇摩尔比2.5、反应时间3.5 h、反应温度150℃、离子液体用量6%时,酯化率可达92.4%。且离子液体具有较好的重复使用性能,重复使用6次后,酯化率依然高于85%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号