首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of composite hydrogels containing silver nanoparticle used for bioadhesives were prepared from acrylic acid, poly(ethylene glycol) methyl ether acrylate, and silver nanoparticles through ex situ polymerization. Silver nanoparticles with a narrow size distribution were prepared by the reduction of a silver nitrate solution with ascorbic acid. The influence of the content of the silver nanoparticles in the hydrogels on the equilibrium swelling ratio, mechanical properties, electrical conductivity, and inactivation of Escherichia coli (E. coli) was investigated in this study. The results showed that the swelling ratios of the composite gels were reduced by silver nanoparticles in the gels but were not reduced with an increase in the content of silver nanoparticles. In addition, the crosslinking density and shear modulus of these hydrogels did not increase with an increase in the content of silver nanoparticles. The adhesive force of these hydrogels (the APECAg series) was not obviously changed. Finally, the initial rate of E. coli inactivation for the APECAg series hydrogels showed excellent antibacterial properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3653–3661, 2006  相似文献   

2.
The current work deals with the effects of incorporation of silver nanoparticles on the antibacterial and the thermal properties of a flexographic ink. The stable and uniform dispersion of silver nanoparticles in the ink were confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal properties of the pure and nanoparticle loaded ink films were also evaluated using TGA and DSC techniques. The results from this study proved acceptable dispersion characteristics, wherein, the flexographic ink showed a significant antibacterial activity against Gram-positive and Gram-negative bacteria  相似文献   

3.
微波辐射无皂乳液聚合制备单分散热敏性微球   总被引:5,自引:0,他引:5  
在微波辐射条件下苯乙烯(St)和N-异丙基丙烯酰胺进行无皂乳液聚合,结果表明所制备的微球粒径小于150nm且为单分散。利用透射电子显微镜(TEM)观察微球形态及粒径。通过动态激光光散射粒度仪(PCS)考察微球的热敏性,微球粒径随温度发生变化。  相似文献   

4.
5.
Homogeneous atom transfer radical polymerization of methyl methacrylate (MMA) under microwave irradiation (MI) with low concentration of initiating system [ethyl 2-bromobutyrate (EBB)/CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)] was successfully carried out in N,N-dimethylformamide (DMF) at 69 °C. Plots of ln ([M]0/[M]) vs. time and molecular weight evolution vs. conversion showed a linear dependence. A 27.3% conversion for a polymer with number-average molecular weight (Mn) of 57,280 and a polydispersity index (PDI) of 1.19, was obtained under MI (360 W) with the ratio of [MMA]0/[EBB]0/[CuCl]0/[PMDETA]0=2400/1/2/2 in only 150 min; but 963 min was needed under conventional heating (CH) process to reach a 26.0 % conversion (Mn=63,990 and PDI=1.14) under identical polymerization conditions, indicating a significant enhancement of the polymerization rate under MI.  相似文献   

6.
The emulsifier‐free emulsion polymerization of methyl methacrylate (MMA) was conducted with microwave irradiation. Superfine and monodisperse poly(methyl methacrylate) (PMMA) microspheres were obtained. Microwave irradiation notably promoted the polymerization reaction. This phenomenon was ascribed to the acceleration of the initiator [potassium persulfate (KPS)] decomposition by microwave irradiation. The experimental results revealed that the apparent activation energy of KPS decomposition decreased from 128.3 to 106.0 kJ/mol with microwave irradiation. The average particle size of the prepared PMMA latex was mainly controlled with the MMA concentration; it increased linearly from 103 to 215 nm when the MMA concentration increased from 0 to 0.3 mol/L and then remained almost constant at MMA concentrations of 0.3–1.0 mol/L. The KPS concentration had no effect on the average particle size, but the particle size dispersity was significantly reduced by a high KPS concentration. With a mixed polymerization phase (water/acetone = 1:3 v/v) or a redox initiation system, PMMA nanoparticles were obtained with an average particle size of 45 or 67 nm, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2815–2820, 2004  相似文献   

7.
董春法  张祥林  蔡昊 《精细化工》2013,30(10):1092-1095,1111
以月桂酸为修饰剂,水合肼为还原剂,银氨溶液为银源,在水相中利用液相化学还原法制备了单分散的粒径分布均匀的纳米银粒子。利用透射电子显微镜(TEM)、X射线衍射(XRD)对样品的形貌和结构进行了分析,研究表明,修饰剂与硝酸银的质量比、反应温度对纳米银形貌及粒径有很大影响。当修饰剂与硝酸银的质量比为1.2∶1、反应温度为室温时,能够制备平均粒径为8 nm、粒径均匀、单分散的纳米银粒子。另外,UV光谱也证实,所制的溶胶为粒径均匀的纳米银溶胶。  相似文献   

8.
Microwave irradiation (MI) was applied to the atom transfer radical bulk polymerization of methyl methacrylate. The influence of the amount of the refluxing solvent used for controlling the polymerization temperature, irradiation power, irradiation time, and initiator concentration on the conversion, molecular weight, and molecular weight distribution of the polymers was studied with a benzyl chloride/cuprous chloride/2,2′‐bipyridyl initiation system and compared with the corresponding conventional heating (CH) process. In comparison with CH, the results can be summarized as follows. The polymerization rate for reaching 70% conversion increased 2.6–5.1 times under an irradiation power of 270–630 W. The apparent increasing rate constant was much larger than that with CH and increased with the irradiation power. MI produced a higher polymerization rate and conversion even if the concentration of the initiation system was very low (initial monomer concentration/initial initiator concentration = 200:0.33 mol/mol) and the polydispersity index (DI) was narrower; however, CH yielded almost no polymers. MI promoted the activities of the catalyst and monomer, and its initiation efficiency was higher than that with CH and increased with the irradiation power. MI obviously played an important role in promoting the polymerization rate of atom transfer radical polymerization (ATRP). MI reduced the concentration of the initiation system and perhaps made ATRP controlled (cf. uncontrolled ATRP with CH); at the same time, it made the DI values of the polymers narrower. In comparison with the initiation efficiencies found with benzyl bromide and 2,2′‐azobisisobutyronitrile used as initiators, the initiation efficiency with p‐toluene sulfonyl chloride used as an initiator was higher; moreover, DI was much narrower (1.17), and the polymerization rate was greater. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1787–1793, 2003  相似文献   

9.
Aniline was oxidized with silver nitrate in aqueous solutions of sulfonic acids: camphorsulfonic, methanesulfonic, sulfamic, or toluenesulfonic acids. Polyaniline–silver composites were produced slowly in 4 weeks in good yield, except for the reaction, which took place in sulfamic acid solution, where the yield was low. Polyaniline in the emeraldine form was identified with UV–visible, FTIR, and Raman spectra. Thermogravimetric analysis was used to determine the silver content, which was close to the theoretical prediction of 68.9 wt.%. Transmission electron microscopy demonstrated the presence of silver nanoparticles of ca 50 nm average sizes as the dominating species, and hairy polyaniline nanorods having diameter 150–250 nm accompanied them. The highest conductivity of 880 S cm−1 was found with the composite prepared in methanesulfonic acid solution. Its conductivity decreased with temperature increasing in the 70–315 K range, which is typical of metals such as silver. The conductivity of composites prepared in solutions of other acids was lower and increased with increasing temperature. Such dependence is typical of semiconductors, reflecting the dominating role of polyaniline in the conductivity behaviour. It is proposed that interfaces between the polyaniline matrix and dispersed silver nanoparticles play a dominating role in macroscopic level of conductivity.  相似文献   

10.
Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria (Salmonella typhi and Escherichia coli) than against Gram-positive bacteria (Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.  相似文献   

11.
Ultrasound irradiation is used for anchoring silver nanoparticles with an average size of ~ 51 nm onto the surface of poly(methyl methacrylate) PMMA chips (2 mm diameter), and silver nanoparticles with an average size of ~ 20 nm onto the surface of the PMMA spheres (1–10 μm). The sonochemical reduction was carried out under argon atmosphere at room temperature. The silver nanoparticles were obtained by the irradiation of a mixture containing the PMMA, silver nitrate, ethylene glycol, ethanol, water, and 24% (wt) aqueous ammonia for 2 h, yielding a PMMA‐nanosilver composite. By controlling the atmosphere and reaction conditions, we could achieve the deposition of silver nanoparticles onto the surface of poly(methyl methacrylate). The silver‐deposited PMMA chips (loaded with 0.01–1.0 weight percent silver) were successfully homogenized in melt by extrusion and then injection molded into small, disc‐shaped samples. These samples were analyzed with respect to their directional spectral optical properties in UV, VIS, and IR spectroscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
翟刚  何玉晖  曹亚 《四川化工》2007,10(5):24-27
综述了乳液法制备聚合物纳米粒子的研究进展,详细介绍了采用新型乳化剂,即高分子表面活性剂与反应性表面活性剂,和以超声波辐照技术为主的新技术制备聚合物纳米粒子方面的研究成果。  相似文献   

13.
Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli (E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.  相似文献   

14.
The removal of Ag+ or AgNPs released from nano-products or effluent of WTP is important to reduce the potential risk of AgNPs. In this work, we prepared bimodal nanoporous silica (BNS) to compare the removal efficiency of Ag+ and AgNP with unimodal nanoporous silica (NS). To determine the adsorption capacity of Ag+ and AgNPs on NS and BNS, isotherm and kinetics studies was carried out at different concentrations. The results showed BNS with a bimodal nanoporous structure and a large external surface showed a higher uptake capacity and faster adsorption rate.  相似文献   

15.
Gelatinous polymer matrix microparticles containing silver nanoparticles (AgNPs) were prepared by a novel method to obtain quasi non-swelling anti-fouling paint additives with slow-release characteristics. A w/o type dispersion were elaborated with the aqueous phase of gelatin, urea, silver-nitrate and formaldehyde dispersed in linseed oil. Gelatin was cross-linked by formaldehyde, together with urea for limiting the swelling of the product. Silver-nitrate was reduced with the assistance of gelatin and formaldehyde into homogenously dispersed AgNPs. The microparticles and embedded AgNPs were visualized by scanning and transmission electronmicroscopy. Encapsulated AgNPs with ∼18 nm crystallite size were identified by X-ray powder diffraction. Characterization of gelatin–urea–formaldehyde polymer matrices was carried out by attenuated total reflectance FTIR spectroscopy. Silver dissolution from microparticles and paints with AgNP-containing microparticles was measured by inductively coupled plasma spectrometer and resulted in highly sustained release, compared to unmodified gelatin microparticles and paints containing uncapsulated silver salts. A 7-month-long fouling experiment run in natural sweetwater media showed that solvent-based acrylic paint with AgNPs-containing gelatinous microparticles as additives offered resistance against biofouling at low Ag-release ratio.  相似文献   

16.
Silver nanoparticles were synthesized in linear and branched polyelectrolyte matrices using different reductants and distinct synthesis conditions. The effect of the host hydrolyzed linear polyacrylamide and star-like copolymers dextran-graft-polyacrylamide of various compactness, the nature of the reductant, and temperature were studied on in situ synthesis of silver sols. The related nanosystems were analyzed by high-resolution transmission electron microscopy and UV-vis absorption spectrophotometry. It was established that the internal structure of the polymer matrix as well as the nature of the reductant determines the process of the silver nanoparticle formation. Specifically, the branched polymer matrices were much more efficient than the linear ones for stable nanosystem preparation.  相似文献   

17.
A new method for the preparation of silver nanoparticles/polymer nanocomposite materials by UV-radiation curing of multifunctional acrylate monomers has been developed. Silver nanoparticles possessing an average diameter of 6.6 nm were first prepared by chemical reduction of silver nitrate with t-BuONa-activated sodium hydride in THF. Transmission electron microscopy (TEM) and size distribution analysis revealed that silver(0) nanoparticles remained well-dispersed in acrylic formulations composed of tetrahydrofurfuryl acrylate, polyurethane acrylate and polyethylene glycol 400 diacrylate. The curing process was followed quantitatively by infrared spectroscopy through the decrease of the IR bands characteristic of the functional groups upon UV exposure. The viscoelastic properties of the nanocomposite photopolymer were monitored by dynamic mechanical analysis (DMA). Silver nanoparticles were found to have no detrimental effect on the photopolymerization kinetics and the incorporation of metal nanoparticles allowed to reduce the gloss of UV-cured coatings. An increase of the diameter of silver nanoparticles to 20 nm was observed during the curing process.  相似文献   

18.
Synthesis of silver nanoparticles stabilized by myristic acids is reported. Bimodal shape of silver nanoparticles was formed by feed rate control using semi-batch method. The synthesized nanoparticles were re-dispersible in solution such as α-terpineol. The α-terpineol solution of these nanoparticles exhibited a surface plasmon resonance in the range around 430 nm. This broad absorption band depicted that the silver nanoparticles have an enhanced stability with increasing chain length of the fatty acid. The size of nanoparticles was influenced by the experimental conditions such as temperature, feed rate and reaction time. The nanoparticles were characterized by TEM, UV and XRD analyses.  相似文献   

19.
Genhua Zheng  Wenping Wang 《Carbon》2004,42(14):2839-2847
Poly(styrene-co-acrylonitrile)/expanded graphite composite sheets with very low in-plane (8.5 × 10−3 Ω cm) and through-thickness (1.2 × 10−2 Ω cm) electrical resistivities have been prepared. The expanded graphite was made by oxidation of natural graphite flakes, followed by thermal expansion at 600 °C. Microscopic results disclosed that the expanded graphite has a legume-like structure, and each “legume” has a honeycomb sub-structure with many diamond-shaped pores. After soaking the expanded graphite with styrene and acrylonitrile monomers, the polymer/expanded graphite composite granules were obtained by in situ polymerization of the monomers inside the pores at 80 °C. The functional groups and microstructures of the oxidized graphite, expanded graphite and composites in the forms of particles or sheets were carefully characterized using various techniques, including X-ray powder diffraction, thermogravimetry, optical and electron microscopy. It was found that the honeycomb sub-structure survived after hot-pressing, resulting in a graphite network penetrating through the entire composite body, which produces a composite with excellent electrical conductivity.  相似文献   

20.
We present a new synthetic approach leading to the formation of polypyrrole architectures in submicron level and to silver/polypyrrole nanocomposites via an interfacial polymerization in a water/chloroform interface. The oxidizing agent was either Ag(I) or Fe(III). In the first case, silver nanoparticles resulted. The mean diameter of the polypyrrole structures is in the range of 200-300 nm according to the addition or not of various surfactants. The progress of the reaction was studied by UV-visible spectroscopy, which also revealed the formation of a polaron band during the growth of the oligomers. The crystal structure of the polymers was examined by X ray diffractometry and all samples appeared to be amorphous, while the samples were further characterized by thermogravimetric analysis and FT-IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号