首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(16):4628-4636
Novel chiral acetylene monomers bearing carbazole and triphenylamine groups, namely, (S)-3-butyn-2-yl 2-(9-carbazolyl)ethyl carbonate (1) and (S)-3-butyn-2-yl 4-(diphenylamino)benzoate (2) were synthesized, and polymerized with Rh+(nbd)[η6-C6H5B(C6H5)3] catalyst to give the corresponding polymers with moderate molecular weights (Mn 13.0 × 103 and 15.5 × 103) in good yields (86% and 88%). CD spectroscopic studies revealed that poly(1) and poly(2) took predominantly one-handed helical structure in CHCl3. The helical structures of poly(1) and poly(2) were very stable against heating and addition of MeOH. The solution of poly(1) and poly(2) emitted fluorescence in 0.52% and 7.2% quantum yields, which were lower than those of the corresponding monomers 1 and 2 (22.5% and 76.5%). The cyclic voltammograms of the polymers indicated that the oxidation potentials of the polymers were lower than those of the monomers. The polymers showed electrochromism and changed the color from pale yellow to pale blue by application of voltage, presumably caused by the formation of polaron at the carbazole and triphenylamine moieties. The onset temperatures of weight loss of poly(1) and poly(2) were 225 and 270 °C under air.  相似文献   

2.
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(22):6491-6500
Pyrene-functionalized chiral methylpropargyl esters, (R)-3-butyn-2-yl-1-pyrenebutyrate [(R)-1], (S)-3-butyn-2-yl-1-pyrenebutyrate [(S)-1], (R)-3-butyn-2-yl-1-pyrenecarboxylate [(R)-2], and 3-butyn-2-yl-1-pyrenecarboxylate [(R,S)-2] were polymerized with (nbd)Rh+[η6-C6H5B(C6H5)3] to obtain the corresponding polymers with moderate molecular weights (Mn: 10?500-66?500) in good yields (82-97%). All the polymers were soluble in CHCl3, CH2Cl2, and THF. The polarimetric and CD spectroscopic data indicated that poly[(R)-1], poly[(S)-1], and poly[(R)-2] existed in a helical structure with predominantly one-handed screw sense in these solvents. The helical structure of poly[(R)-1] and poly[(S)-1] was stable upon heating and addition of MeOH, while that of poly[(R)-2] changed upon MeOH addition. The copolymerization of (R)-1 with (S)-1 was also conducted to obtain the copolymers satisfactorily. Poly[(R)-1], poly[(S)-1], and poly[(R)-2] emitted fluorescence smaller than the corresponding racemic copolymers. The fluorescence intensity was tuned by the addition of MeOH to THF solutions of the polymers.  相似文献   

3.
Toru Katsumata 《Polymer》2009,50(6):1389-6640
The ring-opening metathesis polymerization (ROMP) of norbornene derivatives 1-5 bearing oligomeric siloxane pendant groups was carried out with Grubbs 1st and 2nd generation, and Grubbs-Hoveyda ruthenium (Ru) catalysts. Monomer 1 gave high-molecular-weight polymers (Mn ca. 27?000-180?000) in high yields (80-100%). Monomers 2-5 also polymerized with Ru carbene catalysts to give high-molecular-weight polymers (Mn ca. 34?000-240?000) in high yields (66-100%). The onset temperatures of weight loss (T0) of the polymers were 180-250 °C. The glass transition temperatures (Tgs) of poly(1) and poly(2) bearing branched siloxane linkages were near or higher than room temperature (27 and 101 °C). Meanwhile, the Tgs of poly(3)-poly(5) bearing linear siloxane linkages were much lower (−115 to −23 °C), and decreased with increasing length of the siloxane linkages. Poly(1) and poly(2) were hydrogenated completely, which was confirmed by 1H NMR spectroscopy. The free-standing membranes of poly(1) and poly(2) showed high gas permeability; especially poly(2) is the most permeable to various gases among ROMP-polynorbornene derivatives reported so far.  相似文献   

4.
Ying Xu  Xiaobo Huang  Chengjian Zhu 《Polymer》2010,51(5):994-6036
Chiral polymer P-1 incorporating (R,R)-salen-type unit was synthesized by the polymerization of (R,R)-1,2-diaminocyclohexane with 2,5-dibutoxy-1,4-di(5-tert-butylsalicyclaldehyde)-phenylene (M-1) via nucleophilic addition-elimination reaction, and chiral polymer P-2 incorporating (R,R)-salan-type unit could be obtained by the reduction reaction of P-1 with NaBH4. The fluorescence response of two chiral polymers P-1 and P-2 on (R)- or (S)-phenylglycinol were investigated by fluorescence spectra. The fluorescence intensities of two chiral polymers P-1 and P-2 show gradual enhancement upon addition of (R)- or (S)-phenylglycinol and keeps nearly linear correlation with the concentration molar ratios of (R)- or (S)-phenylglycinol. But both P-1 and P-2 exhibited more sensitive response signals for (S)-phenylglycinol. The values of enantiomeric fluorescence difference ratio (ef) are 1.84 and 2.05 for P-1 and P-2, respectively. The results also showed that two chiral polymers P-1 and P-2 can also be used as fluorescence sensors for enantiomer composition determination of phenylglycinol.  相似文献   

5.
João Carlos Ramos 《Polymer》2006,47(24):8095-8100
(R)-(−) (1) and (S)-(+)-2-(3′-Thienyl)ethyl N-(3″,5″-dinitrobenzoyl)-α-phenylglycinate (2) monomers were synthesized, characterized, and polymerized in chloroform using FeCl3 as an oxidizing agent. Molecular weights of 2.6 × 104 and 3.2 × 104 for poly1 and poly2, respectively, were determined by SEC analysis. FTIR spectra of the polymers indicated the coupling of monomers through the α positions. UV-vis spectra showed absorption bands at λmax = 226 and 423 nm for poly1 and poly2, ascribed to transitions of side groups and polythiophene backbone, respectively. Poly1 and poly2 remained stable up to 210 °C. At higher temperatures, a two step weight loss degradation process was observed for both polymers by TGA analysis. 1H NMR, in the presence of Eu(tfc)3, and optical rotation measurements indicate the chiral properties of the monomers 1 ([α]D28 = −76.2) and 2 ([α]D28 = +76.0), and the maintenance of chirality after polymerization (poly1 [α]D28 = −29.0 and poly2 [α]D28 = +28.4, c = 2.5 in THF). According to scanning electron microscopic analysis, the polymers are highly porous.  相似文献   

6.
Jinqing Qu  Toshio Masuda 《Polymer》2006,47(19):6551-6559
Novel acetylene monomers containing N-phenyl-substituted carbazole (Cz) and triphenylamine (TPA) groups, namely, 3-ethynyl-9-phenylcarbazole (1) and p-(N,N-diphenylamino)phenylacetylene (2) were synthesized, and polymerized with several Rh-, W-, and Mo-based catalysts. Poly(1) and poly(2) with high number-average molecular weights (15?500-974?000) were obtained in good yields (77-97%), when [(nbd)RhCl]2-Et3N (nbd = norbornadiene) was used as a catalyst. The polymers exhibited UV-vis absorption peaks derived from the Cz and TPA moieties at 250-350 nm and polyacetylene backbone above 350 nm. The UV-vis absorption band edge wavelengths of the polymers were longer than those of the corresponding monomers. Poly(2) exhibited a UV-vis absorption peak at a longer wavelength than poly(1) did, which indicates that poly(2) has main chain conjugation longer than that of poly(1). The molecular weights and photoluminescence quantum yields of the polymers obtained by the polymerization using [(nbd)RhCl]2-Et3N were larger than those of the Rh+(nbd)[η6-C6H5B(C6H5)3]-based counterparts. The cyclic voltammograms of the polymers indicated that they had clear electrochemical properties; the onset oxidation voltage of poly(1) was higher than those of N-alkyl-substituted Cz derivatives. The polymers showed electrochromism and changed the color from pale yellow to blue by application of voltage, presumably caused by the formation of charged polaron at the Cz and TPA moieties. The temperatures for 5% weight loss of the polymers were around 350-420 °C under air, indicating the high thermal stability.  相似文献   

7.
Polymers P-1, P-2, P-3, P-4 and P-5 were synthesized by the polymerization of 5,8-bis(ethynyl)isoquinoline (M-1) with (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-2), (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-2), (R)-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-3), (S)-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-3), and rac-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl (M-4) under Sonogashira reaction, respectively. Both monomers and polymers were analyzed by NMR, MS, FT-IR, UV-vis spectroscopy, DSC-TGA, fluorescence spectroscopy, GPC and circular dichroism (CD) spectroscopy. CD spectra of polymers P-1 and P-2, P-3 and P-4 are almost identical except that they gave opposite signals at each wavelength. The long wavelength CD effect of P-1 and P-2 can be regarded as the more extended conjugated structure in the repeating unit and the helical backbone in the polymer chain. All five polymers have strong blue-green fluorescence due to the efficient energy migration from the extended π-electronic structure of the repeating unit of the polymers to the chiral binaphthyl core and are expected to provide understanding of structure-property relationships of the chiral conjugated polymers.  相似文献   

8.
Treatment of a dihydrosilane (methylphenylsilane, 1) with mixtures of a diyne (p- or m-diethynylbenzene, 2a or 2b) and a triyne (1,3,5-triethynylbenzene, 3a or B,B′,B″-triethynyl-N,N′,N″-trimethylborazine, 3b; 1:2:3=100:95:5, 100:90:10, 100:80:20) in the presence of Pd-PCy3 (Cy=cyclohexyl) catalyst gave new crosslinked silylenedivinylene polycarbosilanes. In TGA the resulting crosslinked polymers tended to show higher Td5 values and higher char yields than the corresponding linear polymers. On the other hand, UV/vis absorption spectra of the crosslinked polymers obtained in the reactions of 2a or 2b with 3a exhibited increased broad peaks around 390 nm for 2a or 360 nm for 2b. Coincidently, their fluorescence spectra showed significant increase of the emission peaks in 400-550 nm. The crosslinked polymer derived from 2a and 3b, however, showed decrease of the absorption peak around 390 nm and profound depression of fluorescence peaks in 400-550 nm.  相似文献   

9.
TEMPO-containing 7-oxanorbornene monomers 1-4 (TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxy) were synthesized and polymerized via ring-opening metathesis using a ruthenium carbene catalyst. Monomers 1 and 3 gave polymers with number-average weights of 80?100 and 112?200 in 85 and 96% yields, respectively, whereas monomers 2 and 4 did not provide high molecular weight polymers. Poly(1) and poly(3) were soluble in common solvents including CHCl3, CH2Cl2 and THF, while insoluble in hexane, diethyl ether and MeOH. They were thermally stable up to ca. 240 °C according to the TGA measurements in air. The secondary batteries utilizing the present polymers as cathode-active material demonstrated reversible charge/discharge processes, whose discharge capacities were 107 and 92.8 A h/kg, and displayed excellent high-rate charge and discharge properties. These cells demonstrated excellent cycle life, e.g., the discharge capacities of poly(1) and poly(3) showed less than 10% decrements even after 100 cycles.  相似文献   

10.
4-Vinylbenzyl glucoside peracetate 1 was polymerized with α,α′-bis(2′,2′,6′,6′-tetramethyl-1′-piperidinyloxy)-1,4-diethylbenzene 2 in chlorobenzene using (1S)-(+)-10-camphorsulfonic acid anhydrous (CSA) as an accelerator ([1]=0.4 M,[1]/[2]/[CSA]=75/1/1.3) at 125 °C for 5 h. The polymerization afforded poly(4-vinylbenzyl glucoside peracetate) having TEMPO moieties on both sides of the chain ends, 3, with a molecular weight (Mw,SLS) of 8500, a polydispersity index (Mw/Mn) of 1.09, and an average degree of polymerization of the 1 unit (x) of 17. Styrene (St) was polymerized with 3 in chlorobenzene at 125 °C (St/chlorobenzene=1/2, w/w). The polymerization successfully afforded polystyrene-poly(4-vinyl glucoside peracetate)-polystyrene, 4, when the polymerization time was below about 2 h. Polymer 4 with the Mw,SLS of 12,500, 17,900, and 29,400, the compositions (y-x-y) of 20-17-20, 45-17-45, and 100-17-100, and the Mw/Mn of 1.12, 1.14 and 1.17 were modified by deacetylation using sodium methoxide in dry-THF into polystyrene-poly(4-vinyl glucoside peracetate)-polystyrene, 5. The solubility of polymer 5 was examined using a good solvent for polystyrene such as toluene and for the saccharide such as H2O.  相似文献   

11.
Polycondensation by Stille coupling of 2-decyl-4,7-dibromobenzimidazoles and N-methyl-2-decyl-4,7-dibromobenzimidazole with 2,5-bis(trimethylstannyl)thiophene and 5,5′-bis(trimethylstannyl)-2,2′-bithiophene gave the corresponding π-conjugated polymers, poly(2-decylbenzimidazole-4,7-diyl-thiophene-2,5-diyl) 1b, poly(2-decylbenzimidazole-4,7-diyl-bithiophene-2,5-diyl) 1c and poly(N-methyl-2-decylbenzimidazole-4,7-diyl-thiophene-2,5-diyl) 2b, in 98-99% yields. The polymers 1b and 2b were fully soluble in CF3COOH, and partially soluble in DMF (about 60 and 40% for 1b and 2b, respectively) and NMP (about 70 and 40%, respectively). The NMP soluble part of 1b and DMF soluble part of 2b gave values of 0.36 and 0.24 dl g−1 in NMP and DMF, respectively. The DMF soluble part of 1b, 1c and 2b showed absorption peaks at about 458, 465 and 388 nm, respectively, in DMF. In an alkaline medium the absorption peaks of 1b and 1c are shifted to a longer wavelength by 92-101 nm; the observed shifts in the acidic medium and alkaline medium were much larger than those observed with usual benzimidazoles with low molecular weights. Packing structures of 1b, 1c and 2b are discussed based on their XRD patterns.  相似文献   

12.
Akito Fukui 《Polymer》2009,50(17):4159-5967
Diarylacetylenes having fluorenyl groups and other substituents (trimethylsilyl, t-butyl, bromine, fluorine) (1a-1) were polymerized with TaCl5-n-Bu4Sn. Monomers 1a-l produced high molecular weight polymers 2a-l (Mw 5.1 × 105-1.3 × 106) in 12-59% yields. All of the polymers were soluble in common organic solvents, and gave tough free-standing membranes by the solution casting method. The onset temperatures of weight loss of polymers 2a-l in air were over 400 °C, indicating considerably high thermal stability. All the polymer membranes showed high gas permeability; e.g., the oxygen permeability coefficient (PO2) of 2a was as large as 4800 barrers. Membrane 2d possessing two fluorine atoms at meta and para positions of the phenyl ring showed the highest oxygen permeability (PO2 = 6600 barrers) among the present polymers.  相似文献   

13.
The Sonogashira-Hagihara polymerization of 3′,5′-diiodo-N-α-tert-butoxycarbonyl-l-tyrosine methyl ester (1) and 3′,5′-diiodo-N-α-tert-butoxycarbonyl-O-methyl-l-tyrosine methyl ester (2) with para-diethynylbenzene (3) was carried out to obtain optically active poly(m-phenyleneethynylene-p-phenyleneethynylene)s [poly(1) and poly(2)] with Mn’s ranging from 9900 to 15,000 in 80-87% yields. Poly(1) exhibited intense CD signals in DMSO and THF, but did not in CH2Cl2, indicating that it took a predominantly one-handed helical conformation in the former two solvents. On the other hand, there was no evidence for poly(2) to take a helical structure in these solvents. Poly(1) turned the CD sign at 390 nm from plus to minus in DMSO/H2O = 9/1 (v/v) by the addition of NaOH. Alkaline hydrolysis of ester moieties of poly(1) and poly(2) gave the corresponding polymers having carboxy groups [poly(1a) and poly(2a)]. Poly(1a) and poly(2a) increased the CD intensity by the addition of NaOH.  相似文献   

14.
Diphenylacetylenes having a dimethyloctylsilyl group and an alkyl group at para positions [Me2n-C8H17SiC6H4CCC6H4R; R = H (1a), i-Pr (1b), t-Bu (1c), n-Bu (1d)] and having only an alkyl group [PhCCC6H4R; R = i-Pr (1B), t-Bu (1C)] were synthesized and then polymerized with TaCl5/n-Bu4Sn catalyst to provide the corresponding poly(diphenylacetylene)s (2a, 2b, 2c, 2d, 2B, and 2C). The formed polymers afforded tough free-standing membranes by casting from toluene solutions. Desilylation reaction of Si-containing membranes (2a-d) was carried out with trifluoroacetic acid to give the desilylated membranes (3a-d). The permeability of these membranes to O2, N2, and CO2 were determined. All the Si-containing membranes exhibited almost the same gas permeability. The desilylation of Si-containing membranes of 2a-c resulted in large increase of gas permeability. No apparent increasing of gas permeability was observed in the desilylation of 2d. To clarify the effects of desilylation, CO2 diffusivity (D(CO2)), CO2 solubility (S(CO2)), and fractional free volume (FFV) of the polymer membranes were investigated. The S(CO2) values of desilylated membranes were much larger than that of Si-containing counterparts. The D(CO2) and FFV of membranes of 2a-c increased through desilylation. The desilylated membrane of 3d had small D(CO2) value and almost the same FFV compared with 2d. Further, the comparison of the permeability between three types of membranes with the same chemical structure revealed that the microvoids were not generated by the desilylation of membranes of poly(diphenylacetylene)s containing alkyl groups.  相似文献   

15.
We have studied an electrochromic precursor, 2-(2-thienyl)-1H-pyrrole (1), using two improved procedures of the Trofimov reaction. Optimised stereochemical calculations at the B3LYP/6-311G* level showed almost equal s-cis and s-trans conformational populations in 1 with marked out-of-plane deviations of ca. 30°. Model calculations suggest that the predominant rotational conformation in undoped poly(1) would be s-trans with the essential out-of-plane deviations around the all three interheterocyclic bonds of ca. 25-30°. Monomer 1 exhibited two irreversible oxidation processes at +0.86 and +1.3 V corresponding to the oxidation of the pyrrole and thiophene rings, respectively. Orange to black electrochromic behaviour was found in ClO4 doped poly(1) thin films with colouring and bleaching times of 1.8 and 1.3 s, respectively. The colouration efficiency during the bleaching process was 233 cm2/C. The optical contrast at 450 nm was 19% and in the near-IR was 36%. The band-gap of poly(1) (1.6-1.7 eV) was found to be significantly lower than that of polypyrrole (2.85 eV) and polythiophene (2.3 eV) as a consequence of increased electron delocalisation in the system. Important differences in the morphology of doped and dedoped poly(1) films were observed by atomic-force microscopy (AFM). Doped poly(1) films showed a granular morphology with primary particles of 45-60 nm in size and an average surface roughness of 3.5 nm. On the other hand, dedoped poly(1) films showed interconnected aggregates of 65-90 nm in size as a consequence of particle fusion, with a surface roughness of 9.2 nm. In summary, poly(1) is a promising material for emerging flexible electrochromic devices such as displays and variable optical attenuators.  相似文献   

16.
Toru Katsumata 《Polymer》2008,49(12):2808-2816
The polymerization of diphenylacetylene derivatives possessing tert-amine moieties, such as triphenylamine, N-substituted carbazole and indole, was examined in the presence of TaCl5-n-Bu4Sn (1:2) catalyst. A polymer with high molecular weight (Mw = 570 × 103) was obtained in good yield by the polymerization of diphenylamine-containing monomer 1b, whereas the isopropylphenylamine derivative (1c) gave a polymer with relatively low molecular weight (Mw = 2.4 × 103). The polymerization of monomer 1d containing cyclohexylphenylamine group did not proceed; however, carbazolyl- and indolyl-containing monomers also produced polymers. Poly(1b), poly(2f) and poly(4b) could be fabricated into free-standing membranes by casting toluene solutions of these polymers. The gas permeability of poly(1b) was too low to be evaluated accurately whereas poly(4b) possessing two chlorine atoms in the repeating unit showed higher gas permeability than that of poly(1b); furthermore, poly(2f) having trimethylsilyl and 3-methylindolyl groups exhibited relatively high gas permeability (). In the cyclic voltammograms of diphenylamino group-containing polymers, poly(1b) and poly(2b), the intensities of oxidation and reduction peaks decreased more than those of carbazolyl-containing poly(2a). The molar absorptivity (?) of poly(1b) at ∼700 nm increased with increasing applied voltage in the UV-vis spectrum.  相似文献   

17.
Rupei Tang  Caixia Cheng  Fu Xi 《Polymer》2005,46(14):5341-5350
Two dendronized poly(p-phenylene vinylene) (PPV) derivatives, ED-PPV and BB-PPV, have been successfully synthesized according to the Gilch route. The obtained polymers possess excellent solubility in common solvents, good thermal stability with 5% weight loss temperature of more than 340 °C. The weight-average molecular weight (Mw) and polydispersity index (PDI) of ED-PPV and BB-PPV are in the range of (1.26-2.34)×105 and 1.37-1.45, respectively. Polymer light-emitting diodes (PLEDs) with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al devices were fabricated, and the PLEDs emitted green-yellow light. The turn-on voltages of the PLEDs based on ED-PPV and BB-PPV were approximately 4.3, and 4.5 V, respectively. The PLED devices of ED-PPV exhibited the maximum luminance of about 157 cd/m2 at 10.5 V. Photovoltaic cells with the configuration of ITO/PEDOT:PSS/polymer:C60 (1:1)/Al were also fabricated, and the energy conversion efficiency of the devices based on ED-PPV and BB-PPV was measured to be 0.58, and 0.014%, respectively, under the white light at 75 mW/cm2.  相似文献   

18.
In this study, theoretical analysis on the geometries and electronic properties of various conjugated poly(azomethine)s is reported. The theoretical ground-state geometry and electronic structure of the studied poly(azomethine)s are optimized by the hybrid density functional theory (DFT) method treated in periodic boundary conditions at the B3LYP level of theory with 6-31G basis set. The geometry and electronic structure of poly(1,4-phenylenemethylidyneitrilo-1,4-phenylene-nitrilomethylidyne) (PPI) are compared with those of poly(p-phenylene vinylene) (PPV) or polyazine (PAZ). The theoretical results suggest the non-coplanar conformation of PPI but PPV and PAZ with a coplanar conformation. The electronic properties of PPI are in the intermediate between PPV and PAZ. The non-coplanar conformation of PPI could be released if the phenylene ring is replaced by the five-member ring of 3,4-ethylenedioxythiophene (PEEI), pyrrole (PYYI), thiophene (PTTI), furan (PFFI), or thiadiazole (PThThI). The theoretical Eg of PEEI, PYYI, PFFI, and PTTI are in the range of 1.11-1.67 eV, which is due to the coplanar configuration or donor-acceptor intrachain charge transfer. However, the large bond length alternation or lack of charge transfer characteristic makes the PThThI with a larger Eg of 2.47 eV than others. The trend on the IP or EA of the studied conjugated poly(azomethine)s are consistent with the electronic characteristic of the aromatic ring. The upper valence bandwidth of the studied five-member ring based poly(azomethine)s except PThThI is in the range of 562-613 meV, which is larger than that of PPI (247 meV) or PPV (373 meV). The results suggest that the electronic properties of conjugated poly(azomethine)s could be varied through various ring structure. The proposed new coplanar conjugated poly(zomethine)s can be potentially used as transparent conductors or thin film transistors.  相似文献   

19.
A new synthetic method for the preparation of poly(benzoxazole) (PBO) precursor, poly(o-hydroxyamide) (7) from bis(o-aminophenol) (5) and diphenyl isophthalate (6) has been developed. Polymer 7 was prepared by the polycondensation of 5 and 6 in 1-methyl-2-pyrrolidinone (NMP) at 185-205 °C. Model reactions were carried out in detail to elucidate appropriate conditions for the formation of 2-hydroxybenzanilide (3) from o-aminophenol (1) and phenyl benzoate (2). The photosensitive (PBO) precursor based on polymer 7 containing a 22% of benzoxazole unit and 30 wt% 1-{1,1-bis[4-(2-diazo-1-(2H)naphthalenone-5-sulfonyloxy)phenyl]ethyl}-4-{1-[4-(2-diazo-1(2H)naphthalenone-5-sulfonyloxy)phenyl]methylethyl}benzene (S-DNQ) showed a sensitivity of 110 mJ cm−2 and a contrast of 5.0 when it was exposed to 436 nm light followed by developing with a 2.38 wt% aqueous tetramethylammonium hydroxide solution at room temperature. A fine positive image featuring 8 μm line and space patterns was observed on the film of the photoresist exposed to 200 mJ cm−2 of UV-light at 436 nm by the contact mode.  相似文献   

20.
Amino acid-derived novel norbornene diester derivatives, 5-norbornene-endo,endo-2,3-dicarboxylic acid bis((S)-2-N-(tert-butoxycarbonyl)aminopropyl) ester (1a), 5-norbornene-exo,exo-2,3-dicarboxylic acid bis((S)-2-N-(tert-butoxycarbonyl)aminopropyl) ester (1b), bis(N-α-(tert-butoxycarbonyl)-l-alanine) 5-norbornene-2,3-endo,endo-dimethyl ester (2a), bis(N-α-(tert-butoxycarbonyl)-l-alanine) 5-norbornene-2,3-exo,exo-dimethyl ester (2b) were synthesized and polymerized by the Grubbs catalyst, 2nd generation. Ring-opening metathesis polymerization of the monomers satisfactorily proceeded to give the polymers with fairly high molecular weights in good yields. The polymerization rate was not affected by the stereostructure of the monomers, endo,endo- and exo,exo-, while largely affected by solvents. The order of polymerization rate was as follows: acetone-d6 > benzene-d6 > DMF-d7 ≈ CD2Cl2 > CDCl3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号