首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Direct melt compounding was used to prepare nanocomposites of organophilic montmorillonite (o‐mmt) clay dispersed in maleated polypropylenes (PPgMA) as well as nanocomposites of organoclay and polypropylene (PP) modified with various grades of PPgMA compatibilizers. The thermal effect on the rheology and melt compounding was first investigated with a plasticorder. The shear viscosities and the melt flow indices (MFI) of the PPgMA compatibilizers were sensitive to the blending temperature, which had to be varied with the compatibilizer grade to achieve desirable level of torque for extensive exfoliation of organoclay in the plasticorder. However, for low molecular weight oligomer, the clay dispersion was poor because of low shear viscosity and thermal instability. Next, the PPgMA‐modified PP/organoclay nanocomposites were prepared on a corotating twin‐screw extruder. The nanoscale dimensions of the dispersed clay platelets led to significantly increased linear viscoelastic properties, which were qualitatively correlated with the state of exfoliation in the nanocomposites. The relative viscosity (relative to the silicate‐free matrix) curves revealed a systematic trend with the extent of clay exfoliation. Furthermore, the degree of clay dispersion was found to increase with the loading of compatibilizers; however, high loading of compatibilizer compromised the final moduli of the nanocomposites. POLYM. ENG. SCI. 46:289–302, 2006. © 2006 Society of Plastics Engineers  相似文献   

2.
Summary Polypropylene-clay nanocomposites were prepared by melt intercalation in a twin screw extruder using two mixing methods: two-step mixing and one-step mixing. The effect of using two different kinds of PP-g-MA (polypropylene-grafted maleic anhydride), with graft efficiencies of 0.1 and 1.0 wt% of MA and with different molecular weight, on clay dispersion and mechanical properties of nanocomposites was investigated. Three different clays, natural montmorillonite (Cloisite Na+) and chemically modified clays Cloisite 20A and Cloisite 30B were used. The relative influence of each factor was observed from structural analysis by WAXD, TEM, and mechanical properties. X-ray diffractometry (XRD) was used to investigate the intercalation effect in the nanocomposites. The results indicted that the intercalation effect and mechanical properties, specially modulus, tensile strength and impact strength, were enhanced by increasing the content of MA, using maleated PP with higher graft efficiency, and using the two step mixing conditions. Better dispersion and exfoliation were obtained when using clay 20A than 30B and natural Na+ montmorillonite. The results showed that clay dispersion and interfacial adhesion are greatly affected by the kind of maleated PP. The increase in content of polar groups gives as a result better interfacial adhesion and subsequent mechanical performance.  相似文献   

3.
Mark A. Treece 《Polymer》2007,48(4):1083-1095
The rheology of polypropylene-clay nanocomposites was studied as a function of organoclay loading, degree of exfoliation, and presence of maleic anhydride functionalized polypropylene compatibilizer. Samples exhibit varying degrees of solid-like response in the terminal regime of small-amplitude oscillatory shear (SAOS), certifying that differences in clay silicate delamination were achieved for fixed organoclay loading. Previous work has also demonstrated that mechanically percolated nanocomposites exhibit logarithmically increasing storage modulus with time at low frequency, behavior attributed to the continuous development of a mesoscale organoclay network akin to that observed for colloidal gels. Continuous low frequency SAOS experiments not only affirm such behavior but also reveal that it is ubiquitous to polypropylene-clay nanocomposites, including samples whose organoclay loading and extent of exfoliation place them below the ostensible mechanical percolation threshold. Similar experiments conducted on uncompatibilized samples support the analogy to soft glassy dynamics, whereby van der Waals attractions drive the formation of a heterogeneous, gel-like organoclay network. Intermolecular associations between pendant group functionalities on the compatibilizer have contributed to logarithmic increases in the storage modulus with time for pure maleated samples, but the reduced concentrations of maleated polypropylene present in the materials reported here are shown to not influence the solid-like rheology over time through network formation. Thus, we demonstrate that only organoclay network formation is responsible for the time-dependent rheology in polyolefin nanocomposites.  相似文献   

4.
This work seeks to optimize the twin‐screw compounding of polymer‐clay nanocomposites (PCNs). Proportional amounts (3:1) of maleic anhydride functionalized polypropylene compatibilizer (PP‐g‐MA) and organically modified montmorillonite clay at clay loadings of 1, 3, and 5 wt% were melt‐blended with a polypropylene (PP) homopolymer using a Leistritz Micro 27 twin‐screw extruder. Three melt‐blending approaches were pursued: (1) a masterbatch of PP‐g‐MA and organoclay were blended in one pass followed by dilution with the PP resin in a second pass; (2) all three components were processed in a single pass; and (3) uncompatibilized PP and organoclay were processed twice. Both corotation and counterrotation operation were utilized to investigate the effect of screw rotation mode and sequence on organoclay exfoliation and dispersion. X‐ray diffraction was employed to characterize basal spacing; however, since rheology is known to be highly sensitive to mesoscale organoclay structure, it is an ideal tool to examine the relationship between the various processing methods and exfoliation and dispersion. A holistic analysis of rheological data demonstrates the efficacy of the masterbatch approach, particularly when compatibilizer and organoclay are blended in counterrotating mode followed by dilution with matrix polymer in corotating mode. POLYM. ENG. SCI., 47:898–911, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
The insertion of the aliphatic diamine inside the organoclay will help the dispersion of the clay platelets in the PP/clay nanocomposite due to the reaction between the maleated PP and the diamine. Cloisite®20A was just simply mixed with hexamethylene diamine (HMDA) under shearing condition in Brabender mixer. HMDA group was successfully penetrated into silicate layers. As a result of penetration, d‐spacing of organoclay was increased. Polypropylene/clay nanocomposites were prepared by compounding with maleated PP and amine‐treated clay. From the FTIR spectra, reaction between amine group and maleic‐anhydride group was confirmed. The effect of the organoclay on the properties of the nanocomposite such as the morphology, dynamic mechanical properties, crystal structure and crystallization behavior, glass transition temperature, thermal stability, and tensile properties were investigated and analyzed. Nanocomposites with amine‐treated clays show enhanced properties compared with those with non–amine‐treated clay (Cloisite®20A). From the TEM analysis, nanocomposites with amine‐treated clays shows better dispersibility compared with those with Cloisite®20A alone. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
The compatibilization effects provided by different amine‐functionalized polyethylenes (PEs) versus those provided by a maleated polyethylene (PEgMA), for forming PE‐based film nanocomposites, were studied. Amine‐functionalized PEs were prepared by reaction of PEgMA with two primary amines, 2‐aminoethanol (EA) and 1,12‐aminododecane (D12), and a tertiary amine, 2‐[2‐(dimethylamino)ethoxy]ethanol (DMAE), in the melt to form the corresponding PEgEA, PEgD12 and PEgDMAE. Nanocomposites were prepared by melt mixing in a twin‐screw extruder PE and these three functionalized compatibilizers with a modified montmorillonite clay. The purpose of the current work was to determine the effect of the various amine‐functionalized PEs on the degree of exfoliation and optical properties of PE–clay nanocomposites in order to obtain nanocomposite films for greenhouse cover applications. Fourier transform infrared analysis confirmed the formation of the amine‐modified PE compatibilizers. Structural, morphological, mechanical, rheological and optical properties of film samples were used to characterize the nanocomposites. All the amine‐modified PE‐compatibilized nanocomposites had better clay exfoliation compared to uncompatibilized PE composites. Results showed that PEgDMAE formed highly exfoliated morphology and a favorable balance between mechanical (stiffness and ductility), optical and thermal insulating film properties even at higher clay contents. It was determined that nanocomposites with greater exfoliated structure showed better optical and thermal insulating film properties. PEgEA and PEgD12 compatibilizers did not provide a better interaction for exfoliation of the organoclay than the PEgMA material. The PEgDMAE compatibilizer led to a highly exfoliated morphology and a favorable balance between mechanical, optical and thermal insulating film properties even at higher clay contents. The PEgDMAE film nanocomposites could be used ideally for greenhouse cover applications. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Water-assisted extrusion process has been used to successfully prepare polypropylene (PP)/clay nanocomposites with high degree of clay delamination and markedly improved rheological, thermal and mechanical properties. PP-graft-maleic anhydride (PP-g-MA)-based nanocomposites and masterbatches were synthesized from untreated clay and organoclay, respectively, and fully characterized. The effects of using high-shear rates and water injection during the melt-compounding were examined. A mechanism explaining the formation of such nanocomposites is then proposed. The best clay dispersion and properties improvements of PP-g-MA/organoclay nanocomposites and masterbatches were obtained using high-shear rates and water injection (synergy effect). PP-based nanocomposites were then synthesized by dilution of PP-g-MA-based masterbatches into neat PP. For comparison, nanocomposites were also prepared by a one-pot process where PP, PP-g-MA and organoclay are directly melt-blended with or without water injection. The nanocomposites prepared by dilution into PP of a masterbatch prepared through water-assisted extrusion showed the highest clay dispersion and consequently the best thermal, mechanical and rheological properties.  相似文献   

8.
Rajkiran R. Tiwari 《Polymer》2011,52(24):5595-5605
Room temperature Izod impact strength was determined for polypropylene (PP)/ethylene-co-octene elastomer (EOR) blends and nanocomposites, containing organoclays based on montmorillonite (MMT), at fixed elastomer content of 30 wt% and 0-7 wt% MMT. A ratio of maleated polypropylene, PP-g-MA to organoclay of unity was used as a compatibilizer in the nanocomposites. The organoclay serves to reduce the size of the EOR dispersed phase particles and facilitates toughening. The Izod impact strength is also influenced by the molecular weight of PP, elastomer octene content, elastomer MFI in addition to MMT content. Nanocomposites based on a low molecular weight polypropylene (L-PP) containing a higher octene content elastomer showed higher impact strength at lower MMT contents compared to those based on a low octene content elastomer. The effect of elastomer octene content on impact strength of high molecular weight polypropylene (H-PP) nanocomposites is not so significant. Elastomers having a melt flow index (MFI) in the range of 0.5-1.0 showed significant improvement in the impact strength of L-PP based nanocomposites. Most H-PP/EOR blends gave ‘super-tough’ materials without MMT and maintain this toughness in the presence of MMT. The critical elastomer particle size below which the toughness is observed is reduced by decreasing the octene content of the elastomer. For the similar elastomer particle sizes in nanocomposites, the impact strength varies as H-PP > M-PP > L-PP. The tensile modulus and yield strength improved with increasing MMT content; however, elongation at break was reduced. The extruder-made TPO showed a good-balance of properties in the presence of MMT compared to reactor-made TPO having similar modulus and elastomer content.  相似文献   

9.
This work analyses the effect of using ethylene-propylene-diene-monomer-grafted maleic anhydride (EPDM-g-MA) as compatibilizer to improve the interfacial properties and toughness of high-density polyethylene–organoclay–silver (HDPE/clay/silver) nanocomposites. EPDM-g-MA was reacted using ultrasound with a solution of AgNO3 0.04 M and ethylene glycol using ammonium hydroxide to obtain the silver ammonium complex. This silver-coated maleated EPDM was then melt mixed with HDPE and organoclay (Nanomer I28E) using a twin-screw extruder. Transmission electron microscopy (STEM) and X-ray diffraction (XRD) results confirmed the filler dispersion of both organoclay and silver nanoparticles into HDPE matrix when maleated EPDM was used. Both fillers were better dispersed and exfoliated by using this compatibilizer. The thermal stability enhancement of nanocomposites was confirmed using thermogravimetric analysis. Mechanical and antimicrobial properties demonstrated that better dispersed filler obtained with maleated EPDM enhanced the toughness and antimicrobial behaviour of HDPE/clay/silver hybrid nanocomposites. This confirmed that maleated EPDM was an efficient compatibilizer to obtain hybrid nanocomposites with enhanced properties to be used for several HDPE applications.  相似文献   

10.
Rajkiran R. Tiwari 《Polymer》2011,52(21):4955-5605
PP/PP-g-MA/MMT/elastomer nanocomposites were prepared in a twin-screw extruder at fixed 30 wt% elastomer and 0-7 wt% MMT content. The ratio of maleated polypropylene, PP-g-MA and organoclay was maintained at 1. Elastomer particle size and shape in the presence of MMT were evaluated for three different molecular weight grades of polypropylene (PP) and five different ethylene-co-octene elastomers (EOR) with different melt flow index (MFI) and octene contents. The MMT particles are located exclusively in the PP phase in the PP/PP-g-MA/MMT/EOR nanocomposites as seen from TEM images. Injection molded nanocomposite samples show significant decreases in elastomer particle size and increases in elastomer aspect ratio and particle density compared to as-extruded or pelletized samples. The elastomer particle size decreased significantly with increased MMT content and the molecular weight of PP. Low molecular weight PP based nanocomposite showed a greater reduction in elastomer particle size compared to medium and high molecular weight PP based nanocomposites. Elastomers having MFI in the range of 0.5-1.0 gave minimum elastomer particle sizes in the PP/PP-g-MA/MMT/EOR nanocomposite. The elastomer particles were deformed during injection molding leading to an increase in their aspect ratio. The nanocomposites containing high octene content elastomer gave smaller elastomer particle size and higher elastomer aspect ratios compared to nanocomposites containing low octene content elastomer.  相似文献   

11.
This work investigates two different melt‐blending strategies for preparing compatibilized polypropylene‐clay nanocomposites, specifically: (1) conventional twin‐screw extrusion, and (2) single‐screw extrusion capable of direct supercritical carbon dioxide (scCO2) feed to the extruder barrel. Proportional amounts (3 : 1) of maleic anhydride functionalized polypropylene compatibilizer and organically modified montmorillonite clay at clay loadings of 1, 3, and 5 wt % are melt‐blended with a polypropylene homopolymer using the two approaches. The basal spacing, degree of exfoliation, and dispersion of organoclay is assessed using X‐ray diffraction, transmission electron microscopy, and rheology. In terms of the latter, both steady shear and small‐amplitude oscillatory shear provide information about the apparent yield stress and solid‐like terminal behavior respectively. Finally, nanoindentation is performed to determine the room temperature modulus of each melt‐blended nanocomposite. The results reveal unequivocally that the high shear of the twin‐screw process is vastly superior to the single‐screw with in‐line scCO2 addition in generating well‐exfoliated, percolated polypropylene‐clay nanocomposites. It is likely that increased contact time between clay and scCO2 is necessary for scCO2 to positively affect exfoliation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 884–892, 2007  相似文献   

12.
Qi-Wei Lu 《Polymer》2004,45(6):1981-1991
Three functionalized polypropylenes (PP), a maleated PP (PP-g-MA), primary amine functionalized PP (PP-g-NH2), and secondary amine functionalized PP (PP-g-NHR), were melt blended with a thermoplastic polyurethane (TPU) at different compositions. Compatibility of each functionalized PP with TPU was compared by investigating the binary blends using rheological (mixer torques, dynamic shear rheometry), thermal (dynamic mechanical analysis), mechanical (tensile test), and morphological (scanning electron microscopy with image analysis, particle size analysis) measurements. Compatibility of the three functionalized PP's with TPU is ranked in a decreasing order as follows: PP-g-NHR≥PP-g-NH2?PP-g-MA, which is attributed to higher reactivity of amine (primary and secondary) with urethane linkages. Accordingly, the TPU blends with the two types of amine functionalized PP's exhibited much better synergy, as reflected by much improved mechanical properties including higher tensile strength and ultimate elongation, and finer and more stable morphologies.  相似文献   

13.
Polypropylene nanocomposites containing organophilic layered silicate were prepared by melt mixing. In order to increase polypropylene polarity, Cl and SO2Cl groups were introduced by reaction with sulfuryl chloride under UV irradiation. Chlorosulfonated polypropylene was subsequently melt-compounded with organophilized montmorillonite clay to produce a masterbatch. The masterbatch was then blended with commercial isotactic polypropylene. An organophilized silicate (Cloisite 15A) and three chlorosulfonated polypropylenes with different degrees of functionalization were used in this study. The effect of various processing procedures was examined as well. The morphology of nanocomposites obtained was examined using TEM and X-ray diffraction. It has been shown that the presence of polar groups leads to an increased gallery distance and partial exfoliation. Nevertheless, full exfoliation of clay platelets has not been achieved. The observed morphologies affected the resulting tensile mechanical behaviour: both stiffness and strength significantly increased.  相似文献   

14.
Polypropylene/organoclay nanocomposites modified with different maleic anhydride grafted polypropylene (PPgMA) compatibilizers were compounded on a twin‐screw extruder. The effectiveness of the feeding sequence and compatibilizer type toward the dispersion of organoclay into PP matrix was critically studied. The composites prepared with side feed appeared to provide better dispersion and modulus improvement over that with hopper feed. The effect of PPgMA compatibilizers, including PB3150, PB3200, PB3000, and E43, with a wide range of maleic anhydride (MA) content and molecular weight was also examined. The structure was investigated with X‐ray diffraction and transmission electron microscopy. The relative complex viscosity curves also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. Mechanical properties were determined by dynamical mechanical analysis and tensile and impact tests. Maleated polypropylene with low‐melt flow index and moderate MA content enhanced clay dispersion and resulted in significant improvement in tensile modulus of the nanocomposites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 100–112, 2004  相似文献   

15.
New polypropylene (PP)-graft-maleic anhydride (PP-g-MA) samples have been successfully synthesized by adding N-bromosuccinimide (NBS) during the reactive extrusion process. These NBS-mediated PP-g-MAs possess higher graft content than classic PP-g-MAs (i.e. without NBS) while they keep acceptable molar masses. NBS-mediated PP-g-MAs were used as matrices in model PP-g-MA/organoclay nanocomposites and compared with commercial and home-made classic PP-g-MAs in order to evaluate their ability to disperse the clay. Significantly better degrees of clay delamination and dispersion were reached using NBS-mediated PP-g-MAs than with classic PP-g-MAs. As expected, PP-g-MAs having high graft content showed the best clay dispersion. Within the examined range of molar masses, the PP-g-MA molar mass had no influence on the clay dispersion. However PP-g-MAs exhibiting important reduction of crystallinity lead to poor clay dispersion whatever the graft content. The PP-g-MA/organoclay nanocomposite prepared using the selected “optimized” NBS-mediated PP-g-MA exhibited the best improvement of thermal properties and one of the best clay dispersions. PP/PP-g-MA blends were prepared to evaluate the miscibility between PP and selected PP-g-MAs. No problem of miscibility between the selected NBS-mediated PP-g-MA and PP was noticed. Finally the PP/organoclay prepared using the selected NBS-mediated PP-g-MA as compatibilizer showed much better clay dispersion and thermal stability than the one prepared with the corresponding classic PP-g-MA, thus establishing the interest to use such new NBS-mediated PP-g-MAs as compatibilizers.  相似文献   

16.
Natural fiber‐reinforced nanocomposites based on polypropylene/nanoclay/banana fibers were fabricated by melt mixing in a twin‐screw extruder followed by compression molding in this current study. Maleic anhydride polypropylene copolymer (MA‐g‐PP) was used as a compatibilizer to increase the compatibility between the PP matrix, clay, and banana fiber to enhance exfoliation of organoclay and dispersion of fibers into the polymer matrix. Variation in mechanical, thermal, and physico‐mechanical properties with the addition of banana fiber into the PP nanocomposites was investigated. It was observed that 3 wt% of nanoclay and 5 wt% of MA‐g‐PP within PP matrix resulted in an increase in tensile and flexural strength by 41.3% and 45.6% as compared with virgin PP. Further, incorporation of 30 wt% banana fiber in PP nanocomposites system increases the tensile and flexural strength to the tune of 27.1% and 15.8%, respectively. The morphology of fiber reinforced PP nanocomposites has been examined by using scanning electron microscopy and transmission electron microscopy. Significant enhancement in the thermal stability of nanocomposites was also observed due to the presence of nanoclay under thermogravimetric analysis. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), conforming the strong interaction between nanoclay/banana fiberand MA‐g‐PP in the fiber‐reinforced nanocomposites systems. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

17.
BACKGROUND: Polymer/clay (silicate) systems exhibit great promise for industrial applications due to their ability to display synergistically advanced properties with relatively small amounts of clay loads. The effects of various compatibilizers on styrene–ethylene–butylene–styrene block copolymer (SEBS)/clay nanocomposites with various amounts of clay using a melt mixing process are investigated. RESULTS: SEBS/clay nanocomposites were prepared via melt mixing. Two types of maleated compatibilizers, styrene–ethylene–butylene–styrene block copolymer grafted maleic anhydride (SEBS‐g‐MA) and polypropylene grafted maleic anhydride (PP‐g‐MA), were incorporated to improve the dispersion of various amounts of commercial organoclay (denoted as 20A). Experimental samples were analyzed using X‐ray diffraction and transmission electron microscopy. Thermal stability was enhanced through the addition of clay with or without compatibilizers. The dynamic mechanical properties and rheological properties indicated enhanced interaction for the compatibilized nanocomposites. In particular, the PP‐g‐MA compatibilized system conferred higher tensile strength or Young's modulus than the SEBS‐g‐MA compatibilized system, although SEBS‐g‐MA seemed to further expand the interlayer spacing of the clay compared with PP‐g‐MA. CONCLUSION: These unusual results suggest that the matrix properties and compatibilizer types are crucial factors in attaining the best mechanical property performance at a specific clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
The influence of organic modifiers on intercalation extent, structure, thermal and mechanical properties of poly(methyl methacrylate) (PMMA)–clay nanocomposites were studied. Two different organic modifiers with varying hydrophobicity (single tallow versus ditallow) were investigated. The nanocomposites were prepared from melt processing method and characterized using wide angle X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. Mechanical properties such as tensile modulus (E), break stress (σbrk), and % break strain (εbrk) were determined for nanocomposites at various clay loadings. Extent of PMMA intercalation is sufficient and in the range 9–15 Å depending on organoclay and filler loading. Overall thermal stability of nanocomposites increases by 16–30°C. The enhancement in Tg of nanocomposite is merely by 2–4°C. With increase in clay loading, tensile modulus increases linearly while % break strain decreases. Break stress is found to increase till 4 wt % and further decreases at higher clay loadings. The overall improvement in thermal and mechanical properties was higher for the organoclay containing organic modifier with lower hydrophobicity and single tallow amine chemical structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Lili Cui  D.R. Paul 《Polymer》2007,48(21):6325-6339
A series of ethylene-vinyl acetate copolymers, EVA, containing 0-40% VA and three organoclays, M2(HT)2, M3(HT)1 and (HE)2M1T1, were melt processed to explore the relationship between the polarity of the polymer matrix and the organoclay structure on the extent of exfoliation and properties of the resulting nanocomposites. The degree of exfoliation of the nanocomposites was evaluated by TEM, WAXS, and mechanical testing. Quantitative particle analyses of TEM images were made to give various averages of the clay dimensions and aspect ratio. The results from different techniques were generally consistent with each other. These EVA copolymer nanocomposites show dramatically improved exfoliation of the organoclay as the VA content is increased. Nanocomposites based on the organoclay with two alkyl tails always gave better exfoliation than those based on the organoclays with a single tail at all VA levels; however, the relative advantage of the two tails versus one tail seems to diminish with increased VA level. The predictions of tensile modulus using a simple composite model based on Halpin-Tsai equations show rather good agreement with the experimental data.  相似文献   

20.
Supercritical carbon dioxide (scCO2) has been proposed as an effective exfoliating agent for the preparation of polymer‐layered silicate nanocomposites, though there is limited fundamental understanding of this mechanism. This study looks at the interactions of this unique green solvent with three maleated polypropylenes of varying anhydride content and molecular size with an alkyl‐ammonium organoclay. Mixtures of compatibilizers and organoclay were melt‐annealed in a high pressure batch vessel at 200°C and subjected to either a blanket of nitrogen or scCO2 at a pressure of 9.7 MPa. The structures and properties of these melt‐annealed mixtures were characterized by X‐ray diffraction, transmission electron microscopy, Fourier Transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and contact angle measurement. The results indicate that the plasticizing influence of scCO2 aided intercalation and exfoliation for intercalants of moderate molecular size and anhydride content which would otherwise have limited diffusion into the clay galleries. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号