首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gan-Ji Zhong  Liangbin Li 《Polymer》2008,49(19):4271-4278
The present article reports the nonisothermal crystallization process and morphological evolution of oriented iPP melt with and without in situ poly(ethylene terephthalate) (PET) microfibrils. The bars of neat iPP and PET/iPP microfibrillar blend were fabricated by shear controlled orientation injection molding (SCORIM), which exhibit the oriented crystalline structure (shish-kebab), especially in the skin layer. The skin layer was annealed at just above its melting temperature (175 °C) for a relatively short duration (5 min) to preserve a certain level of oriented iPP molecules. It was found that the existence of ordered clusters (i.e. oriented iPP molecular aggregates) leads to the primary nucleation at higher onset crystallization temperature, and formation of the fibril-like crystalline morphology. However, the overall crystallization rate decreases as a result that the relatively high crystallization temperature restrains the secondary nucleation. With the existence of PET microfibrils, the heterogeneous nucleation distinctly occurs in the unoriented iPP melt and results in the increase of crystallization peak temperature and overall crystallization rate, for the first time, we observed that the onset crystallization temperature has been enhanced further with addition of PET microfibrils in the oriented iPP melt, indicating the synergistic effect of row nucleation and heterogeneous nucleation under quiescent condition.  相似文献   

2.
The injection‐molded specimens of neat HDPE and the PET/HDPE blends were prepared by conventional injection molding (CIM) and by pressure vibration injection molding (PVIM), respectively. The effect of oscillation pressure and PET phase with different shapes on superstructure and its crystal orientation distribution of injection molded samples were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and two‐dimension wide‐angle X‐ray diffraction techniques (2D‐WAXD). Hermans' orientation functions were determined from the wide‐angle X‐ray diffraction patterns. With the PET particles added, the shear viscosity of blend increase and crystallization rate of HDPE phase is enhanced. For the neat HDPE samples, with the promotion from oscillation shear, the orientation parameter experienced a large increase, moreover, the PVIM can induce transverse lamellae (kebabs) twisting in growth direction. Because of the redefined flow field and nucleation effect of PET particles, the crystal orientation of blend is also increased. So the tensile strength of vibration samples enhanced and elongation at break declined. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
In situ microfibrillar reinforced blend (MRB) based on poly(ethylene terephthalate) (PET) and isotactic polypropylene (iPP) was elaborated by a slit die extrusion, hot stretching, and quenching process. The scanning electronic microscopic images show well-developed PET microfibers in the blends. The on-line small angle X-ray scattering (SAXS) test shows that PET microfibers have high nucleation for iPP crystallization. At the same time, after shear, neat iPP and microfibrillar blend both can faster crystallization rate. Three nucleation origins are proposed in microfibrillar reinforced blends under shear flow field: (a) the classical row nuclei model, (b) fiber nuclei and (c) nuclei induced by fiber assistant alignment. The polarized optical microscopic images indicate that, during the non-isothermal crystallization at a cooling rate of 10 °C/min from 200 °C to room temperature, the neat iPP forms common spherulites, while the diluted microfibrillar blend with 1 wt% of PET has a typical transcrystalline structure.  相似文献   

4.
The influence of different shear stresses induced by changing injection molding speeds on molecular chain orientation and lamellar branching of β-nucleated iPP/poly(ethylene terephthalate) (PET) microparts was investigated using two-dimensional wide-angle X-ray diffraction and 2D-small-angle X-ray scattering. Results indicated that the prevailing shear stress can promote the formation of parent–daughter α-crystal structure and twisted shish–kebab structure in subsequent microparts. The diffraction of (300) plane of β-crystals was also observed at varying injection speeds. Increasing injection speeds can significantly enhance the content of β-crystals from 24 to 41% for β-nucleated iPP microparts. Additionally, the content of β-crystals was further enhanced in β-nucleated iPP/PET microparts with in situ formation of PET microfibrils under intensive shearing conditions. The addition of both PET and β-nucleation agents coupling with high shearing conditions exerts a synergetic effect on the development of β-crystals. However, the orientation degree of crystal lattice decreased with increasing injection speeds for both β-nucleated iPP and iPP/PET microparts.  相似文献   

5.
剪切控制取向注射成型概述   总被引:1,自引:0,他引:1  
对比了剪切控制取向注射成型(SCORIM)与普通注射成型(CIM)的基本原理,剪切控制技术(SCOT),可消除制品熔接缝,改善外观质量,还可消除内在应力和空隙等缺陷,提高制品内在质量。  相似文献   

6.
The effect of shear‐controlled orientation injection molding (SCORIM) was investigated for polybutene‐1/polypropylene blends. This article reports on the methods and processing conditions used for blending and injection molding. The properties of SCORIM moldings are compared with those of conventional moldings. SCORIM is based on the application of specific macroscopic shears to a solidifying melt. The multiple shear action enhances molecular alignment. The moldings were investigated with mechanical tests, differential scanning calorimetry studies, and polarized light microscopy. The application of SCORIM improved Young's modulus and the ultimate tensile strength. The gain in stiffness was greater for higher polybutene‐1 content blends. A drastic decrease in the strain at break and toughness was observed in SCORIM moldings. The enhanced molecular orientation of SCORIM moldings resulted in a featureless appearance of the morphology. Interfacial features due to segregation were visible in the micrographs of SCORIM moldings. Both conventional and SCORIM moldings exhibited form I′ in polybutene‐1. This article explains the relationship between the mechanical properties and micromorphologies. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 806–813, 2003  相似文献   

7.
Yong Wang  Qiang Fu  Yongfeng Men 《Polymer》2004,45(1):207-215
In order to better understand the effect of shear stress on the crystal morphology and orientation of polyolefins, dynamic packing injection molding was used to prepare oriented pure polypropylene (PP) and its blends with linear low density polyethylene (LLDPE). The obtained samples were characterized via 2d-SAXS, 2d-WAXD and AFM. Macroscopically, shear induced morphology with surface skin, central core and oriented layer between the skin and the core was observed in the cross-section areas of the samples. For pure PP, a highly oriented structure was seen in the sheared layer but much less oriented structure exists in the core. The orientation in the skin lies in between. The shish-kebab structure, composed of stretched chains (shish) and layered crystalline lamellae (kebabs), was found in the sheared layer. Shish structure exists mainly in the skin layer and oriented spherulits dominates in the core. For PP/LLDPE (50/50) blends, a change of phase morphology from less-phase-separated structure (homogeneous) in the skin, to co-continuous structure in the sheared layer and sea-island structure in the core was observed. PP formed a shish-kebab structure in all the three layers. And on the other hand, a very unique crystal morphology and lamellar orientation of LLDPE were obtained, with the lamellar stack oriented either perpendicularly or 45-50° away from the shear flow direction.  相似文献   

8.
In situ microfibrillar reinforced composites with ethylene-vinyl acetate (EVA) as matrix and isotactic polypropylene (iPP) as dispersed fibrils were successfully fabricated by multistage stretching extrusion with an assembly of laminating-multiplying elements (LMEs). Four types of EVA with different apparent viscosity were utilized to study the influence of viscosity ratio on the morphology and mechanical properties of EVA/iPP in situ microfibrillar blends. The scanning electron micrographs revealed that the dividing–multiplying processes in LMEs could effectively transform the morphology of iPP phase into microfibrils and the morphology of iPP microfibrils strongly depended on the viscosity ratio. Higher viscosity ratio was favorable for formation of finer microfibrils with narrower diameter distribution. The morphology development of iPP with different viscosity ratio greatly affected the rheological and mechanical properties of EVA/iPP blends. The dynamic rheological results shown that the iPP microfibrils were helpful to increase the storage modulus and loss modulus. The tensile test indicated that the mechanical properties of EVA/iPP blends were controlled by the morphology of iPP phase and the polarity of EVA matrix. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47557.  相似文献   

9.
Microfibrillar blends were prepared from polypropylene and poly (ethylene terephthalate) by extrusion followed by cold drawing. The draw ratio employed had a prominent effect on the aspect ratio of the microfibrils produced, as revealed by scanning electron microscopy. The subsequent isotropization step between the Tm of the polymers created microfibrillar composites with randomly oriented short microfibrils of poly (ethylene terephthalate). The X ray diffraction patterns of the microfibrillar blends were different from those of corresponding composites although the polypropylene phase in both exhibited predominantly the presence of α crystallites. The crystallization of the polypropylene phase was affected by the orientation and diameter of the poly (ethylene terephthalate) microfibrils. The short microfibrils in the microfibrillar composites were not effectual in hastening the crystallization of polypropylene. The thermal decomposition studies revealed the capability of microfibrillar blends to delay the degradation better than the microfibrillar composites.  相似文献   

10.
A nanoclay based masterbatch was mixed with polypropylene (PP) and injection moulded by conventional (CIM) and shear controlled orientation (SCORIM) injection moulding techniques. The aim was to correlate the morphologies induced by SCORIM and CIM processing with the thermal, mechanical and fracture performance of thick PP/nanoclay mouldings. In SCORIM, two extreme shear levels were applied by changing processing conditions. A complete characterization is reported, and statistical analysis was carried out to obtain a relationship between moulding properties. Nanoclay acted as a polymer morphology director, and in combination with SCORIM it induced the formation of the γ polymorph of PP. The nanoclay has a strong positive effect on the thermal degradation of PP under an oxidative atmosphere, due to the barrier effect of clay and the physico‐chemical adsorption of volatile degradation products on the silicates, but there were no differences between processing techniques. SCORIM samples of neat PP showed nonlinear brittle behaviour, while nanocomposites exhibited quasi‐stable behaviour induced by a large deformation capability of the skin. Although fracture initiates at practically the same loading levels, the overall propagation energy values varied with processing conditions. Statistical analysis indicates that the decrement of the core region achieved by SCORIM processing, the differences between skin and core and the PP γ phase induced by the presence of nanoclay are responsible for the toughening of SCORIM PP/nanoclay mouldings. © 2013 Society of Chemical Industry  相似文献   

11.
In this work, normal blends, microfibrillar blends and composites were prepared from low density polyethylene (LDPE) and poly(ethylene terephthalate) (PET) in 85/15 and 75/25 w/w% ratio in the presence and absence of a compatibilizer polyethylene grafted with maleic anhydride (PE-g-MA). The microfibrillar composites (MFCs) were prepared using extrusion – drawing – isotropization technique. The morphology development of the microfibrillar blends and composites was studied using scanning electron microscopy (SEM). The presence of 5 wt% PE-g-MA compatibilizer affected the continuity of the fibrils differently in 75/25 and 85/15 w/w% microfibrillar blends. In the case of normal blends the addition of compatibiliser reduced the size of the dispersed PET phase. The presence of PET microfibrils improved the tensile properties of the microfibrillar composites. The normal blends exhibited a relatively ductile failure during tensile loading in comparison with the microfibrillar composites. The microfibrillar nature of the dispersed phase was found to improve the stiffness of the composite rather than their impact strength.  相似文献   

12.
The rheological behaviors of in situ microfibrillar blends, including a typical semicrystalline/semicrystalline (polyethylene terephthalate (PET)/high‐density polyethylene (HDPE)) and a typical amorphous/semicrystalline (polycarbonate (PC)/HDPE) polymer blend were investigated in this study. PET and PC microfibrils exhibit different influences on the rheological behaviors of microfibrillar blends. The viscosity of the microfibrillar blends increases with increased PET and PC concentrations. Surprisingly, the length/diameter ratio of the microfibrils as a result of the hot stretch ratio (HSR) has an opposite influence on the rheological behavior of the two microfibrillar blends. The stretched PET/HDPE blend exhibits higher viscosity than the unstretched counterpart, while the stretched PC/HDPE blend exhibits lower viscosity than the unstretched blend. The data obtained in this study will be helpful for constructing a technical foundation for the recycling and utilization of PET, PC, and HDPE waste mixtures by manufacturing microfibrillar blends in the future. POLYM. ENG. SCI., 45:1231–1238, 2005. © 2005 Society of Plastics Engineers  相似文献   

13.
增容剂对PP/PET原位微纤化共混物的影响   总被引:1,自引:0,他引:1  
通过"熔融挤出-热拉伸-淬冷"的方法制备了原位微纤化共混物。采用扫描电镜、差示扫描量热仪和力学性能测试等方法研究了增容剂PP-g-GMA含量对共混物微观形态、力学性能和结晶性能的影响。结果表明,增容剂的加入可明显提高两相相容性,改善界面效果,明显降低拉伸前初始粒子的尺寸,但同时使拉伸后形成的微纤呈现一定的损坏,长径比有所降低。增容剂可以明显改善微纤化共混物力学性能,当其含量为2 %(质量分数,下同)时拉伸强度比未增容试样提高了11.0 %,弯曲强度都提高了11.3 %;当其含量为6 %时冲击强度也比未增容共混物提高了34.5 %。此外,PET微纤对PP有很好的异相成核作用,使其结晶温度提高了16.3 ℃,结晶时间为纯PP的32 %左右,而增容剂的加入使共混物中PP的结晶时间延长。  相似文献   

14.
This paper describes the process optimization in injection molding of high-density polyethylene (HDPE). Both conventional injection molding and shear controlled orientation (SCORIM) were employed in processing. The process optimization was based on design of experiments and complemented with analysis of variance. Mechanical characterization was carried out by tensile testing. Wide-angle X-ray diffraction and differential scanning calorimetry were used for the structural characterization of the moldings. High-density polyethylene exhibits 7.2 GPa Young's modulus and 155 MPa of ultimate tensile strength following the application of SCORIM processing. These results account for a fourfold increase in Young's modulus and a fivefold increase in ultimate tensile strength compared to conventional injection molding. The maintenance of toughness while enhancing stiffness and strength of the SCORIM moldings is attributable to an oriented morphology developed during shear flow, i.e., shish-kebab structure. The frequency of shearing action has the strongest influence on the morphology development. It is also demonstrated that the studied parameters are very much interdependent. It is possible to achieve substantial gains in mechanical properties of HDPE in SCORIM processing without causing a substantial increase in cycle time. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2473–2483, 1999  相似文献   

15.
We prepared uniaxially oriented thin films of poly(butylene terephthalate) (PBT) by applying shear strain to the melt and studied their resulting morphology by transmission electron microscopy (TEM), and could show visually that stacked-lamellar structures are formed in aromatic polyesters. On the basis of crystallographic consideration, we assigned each of the recognized stacked-lamellar structures to a shish-kebab structure or a part of it. In addition, we successfully demonstrated that in one shish-kebab structure all or almost all kebabs (namely, lamellae) have a same crystallographic orientation.  相似文献   

16.
Cationic dyeable poly(ethylene terephthalate) (CD‐PET) and metallocene isotactic polypropylene (m‐iPP) polymers were extruded (in the proportions of 75/25, 50/50, 25/75) from two melt twin‐screw extruders to prepare CD‐PET/m‐iPP (and m‐iPP/CD‐PET)‐conjugated fibers of the island‐in‐sea type. This study investigated the thermal behavior and mechanical and morphological characteristics of the conjugated fibers using DSC, TGA, WAXD, melting viscosity rheometer, density indicator, tenacity measurement, and a polarizing microscope. Melting behavior of CD‐PET/m‐iPP polyblended polymers exhibited negative‐deviation blends (NDB) and the 50/50 blend showed a minimum value of the melt viscosity. Experimental results of the DSC indicated CD‐PET and m‐iPP molecules formed a partial miscible system. The tenacity of CD‐PET/m‐iPP‐conjugated fibers decreased initially and then increased as the m‐iPP content increased. Crystallinities and densities of CD‐PET/m‐iPP‐conjugated fibers presented a linear relation with the blend ratio. On the morphological observation, it was revealed that the blends were in a dispersed phase structure. In this study, the CD‐PET microfibers were successfully produced with enhanced diameters (from 2.2 to 2.5 μm). Additionally, m‐iPP colored fibers (m‐iPP fibers covered with CD‐PET polymer) were also successfully prepared. Meanwhile, the presence of PP‐graft‐MA compatibilizer improved the tenacity considerably. Blends with 10 wt % compatibilizer exhibited maximum improvement in the tenacity for m‐iPP colored fibers. The dye exhaustions of various fabrics followed the order: m‐iPP colored fibers > conventional CD‐PET fibers > CD‐PET microfibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5396–5405, 2006  相似文献   

17.
Qixiong Zhou 《Polymer》2011,52(13):2970-2978
In this study, isotactic polypropylene (iPP) samples were prepared by conventional injection molding (CIM) and pressure vibration injection molding (PVIM), in which a periodical shear field was imposed on the iPP melt during the cooling solidification. The distribution of supermolecular structures of samples was investigated by Polarized Light Microscopy (PLM) and Scanning Electron Microscopy (SEM). Results show that the through-the thickness-morphology of sample prepared by CIM features a typical skin-core structure, as a result of general shear-induced crystallization. This structure can be divided into three layers, including a skin layer in which the shish-kebab structure was found, a transition region with deformed spherulite structure and a core layer with spherulitic structure. However, the morphology of the sample prepared by PVIM, as a result of periodical shear-induced crystallization, features a richer and fascinating supermolecular structure and can not be roughly divided into three layers. A region full of shish-kebab-like cylindrulite structures was found between the transition region and the core layer, which is rare to be seen in conventional injection molding. Based on their various core structures, two kinds of shish-kebab-like cylindrulites were defined: one is multi-fibril-core cylindrulite of which core is an assembly of multiple fibrils, and the other is single-fibril-core cylindrulite of which the core just contains a single fibril. Based on the investigated results, a schematic illustration is proposed to depict the through-the thickness-distribution of supermolecular structure of iPP sample prepared by PVIM. The mechanism of the formation of the two kinds of shish-kebab-like cylindrulite structures is also depicted by a schematic illustration, and it was discussed in terms of periodical shear-induced crystallization.  相似文献   

18.
The mechanical properties of isotactic polypropylene (iPP) and propylene-ethylene block copolymer (Co-PP) with carbon black (CB) were added as a filler. By mixing appropriate amounts of the two components through melt-blending in a twin-screw extruder, the blended pellets were prepared to a series of test specimens by injection molding. A scanning electron microscopic study was performed of the morphologies of the impact fractured surfaces. The blending of CB in Co-PP not only improves the impact strength, but also improves the flexural modulus and tensile strength; however, the heat distortion temperature (HDT) of the Co-PP/CB blends decreased with greater filler content. Furthermore, the filler of CB improves the tensile yield strength only at low filler content in iPP/CB blends, and the heat distortion temperature (HDT) and flexural modulus of the iPP/CB blends increased with greater filler content. The impact behavior is not good for the iPP/CB blends. Overall, Co-PP/CB has better interaction of molecules than iPP/CB. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
A strong shear flow was imposed on the melt of polycarbonate (PC) microfibril reinforced high density Polyethylene (HDPE) during a secondary melt flow process, i.e. gas assisted injection molding (GAIM). Classic shish-kebabs and typical transcrystallinity were simultaneously observed in the entire thickness of the GAIM HDPE/PC microfibril composites, which were closely related to the strong shear flow that was further amplified and distributed by incorporated PC microfibrils. Interestingly, some nano-sized ultrafine PC microfibril inclined to absorb extended chain bundles to form shish nuclei on its surface first, which subsequently evolved into hybrid shish-kebab superstructures. It was deemed that the induced formation of hybrid shish-kebab superstructures on nano-sized ultrafine PC microfibril was due to the absorbing of extended chain bundles for hybrid shish nuclei with the strong shear flow serving as the driving force. Importantly, large scale formation of these highly oriented crystalline superstructures can bring significant mechanical reinforcement in GAIM HDPE/PC microfibril composite. For GAIM HDPE/PC microfibril composites, its yield strength is increased by 68% and 66%, compared to the GAIM HDPE parts and the common injection molded (CIM) HDPE/PC composites, respectively; meanwhile, the Young's modulus is enhanced by 253% and 17%, compared to the GAIM HDPE parts and the CIM HDPE/PC composites, respectively.  相似文献   

20.
Repetitive processing was employed to assess the recyclability of in situ microfibrillar poly(ethylene terephthalate) (PET)/high‐density polyethylene (HDPE) blends which were fabricated through a “rectangular slit die extrusion–hot stretching–quenching” process. For comparison, the conventional PET/HDPE blends were also obtained using the same processing operation but without hot stretching. The morphological observation indicated that slit die extrusion and hot stretching successfully made the dispersed PET phase deform in situ into well‐defined microfibrils. The average diameter of the microfibrils increased with the processing cycles. The rheological properties obtained from the parallel‐plate dynamic rheometer suggested that the microfibrillar blends have higher viscosity and viscoelastic moduli (storage and loss moduli) as well as better flow stability than the conventional PET/HDPE blend. More importantly, with the increase in the processing cycles, an increase in yield strength and unchanged tensile modulus were observed for in situ microfibrillar blends, while a decrease in these properties for conventional blend, indicating that the in situ microfibrillar PET/HDPE blends have promising recycling potential.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号