首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clay changes the strain-induced crystallization behavior of natural rubber and induces a dual crystallization mechanism due to the orientation of clay layers during deformation. The structure evolution was probed by in-situ synchrotron wide-angle X-ray diffraction, while the thermodynamics of the onset of crystallization was analyzed by the tube model. The entropy change required for the onset of the strain-induced crystallization of the clay filled rubber is composed of the entropy reduction due to the rubber-filler interactions and also the stretching. The summation of the two kinds of the entropy reduction is nearly equal to that of the neat rubber. The thermodynamic analysis reveals that the orientation of clay layers along the direction of stretching reduces the chain conformational entropy and changes the crystallization mechanism. These results give some new insights into the strain-induced crystallization process and the reinforcement mechanism for the clay filled rubber.  相似文献   

2.
Summary In continuation of previous investigations of the phenomenon of strain-induced crystallization rheo-optical Fourier-Transform infrared (FTIR) spectroscopy has been applied to study the transient structural changes of sulfur-crosslinked natural rubber during stress-relaxation at different stress levels.From these measurements it could be demonstrated that the predominant molecular consequences of the observed stress-relaxation are a substantial improvement of amorphous chain alignment and a less significant increase of the extent and orientation of the strain-induced crystal phase.  相似文献   

3.
Effect of network-chain density (ν) on the strain-induced crystallization of peroxide-crosslinked natural rubber was studied by fast time-resolved synchrotron wide-angle X-ray diffraction. It was observed that the elongation ratio at the onset of strain-induced crystallization (αc) became smaller with the increase of ν. The difference of the entropy between the undeformed and deformed states at each αc was nearly equal in spite of the variation of ν. The calculated melting temperature at αc of the samples was also almost the same regardless of their ν. These observations mean that the strain-induced crystallization occurred when the deformation brought about a definite entropic state for peroxide-crosslinked natural rubber. They agreed with the prediction by Flory and were consistent with the classical theory of rubber elasticity.  相似文献   

4.
Laminates consisting of natural rubber (NR) sandwiched between cloth fabric and polyester film were pulled apart at various rates and temperatures in a T-peel geometry. Peel energies for joints containing uncrosslinked or lightly-crosslinked NR did not obey simple time-temperature superposition. This behavior is attributed to strain-induced crystallization during peeling. However, when the rubber was highly crosslinked, strain crystallization seems to be absent, as peel energies now can be WLF shifted to form a mastercurve.  相似文献   

5.
Kishore K. Indukuri 《Polymer》2005,46(18):7218-7229
Three poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS) thermoplastic elastomers (TPEs) are studied mechanically and compared to cross-linked natural rubber. It is observed that subtle alterations in the mid-block of the TPEs affect their mechanical properties significantly. The stress relaxation at room temperature is significantly altered indicating a reduced flow in systems where the ratio of ethylene to butylene segments in the mid-block is greater than one. The cyclic behavior of these systems also shows significant hysteresis. Differential scanning calorimetry suggests that these TPEs crystallize at low temperatures, similar to the observed behavior in cross-linked natural rubber. Results of internal energy changes from deformation calorimetry provide evidence for strain-induced crystallization occurring in certain SEBS systems, similar to the internal energy changes observed for cross-linked natural rubber. Simultaneous WAXD/SAXD measurements on deformed SEBS samples highlight deformation at the nanometer and the molecular length scales. In situ WAXD at different strains further reinforces the evidence for formation of strain-induced crystallites in the selected systems. Strain-induced crystallization occurring in certain TPEs provides a mechanism for reduction of flow at high strains and accounts for the retention of their highly elastic behavior.  相似文献   

6.
Laminates consisting of natural rubber (NR) sandwiched between cloth fabric and polyester film were pulled apart at various rates and temperatures in a T-peel geometry. Peel energies for joints containing uncrosslinked or lightly-crosslinked NR did not obey simple time-temperature superposition. This behavior is attributed to strain-induced crystallization during peeling. However, when the rubber was highly crosslinked, strain crystallization seems to be absent, as peel energies now can be WLF shifted to form a mastercurve.  相似文献   

7.
New natural rubber (NR)/nitrile butadiene rubber (NBR)/hindered phenol (AO-80) composites with high-damping properties were prepared in this study. The morphological, structural, and mechanical properties were characterized by atomic force microscopy (AFM), polarized Fourier transform infrared spectrometer (FTIR), dynamic mechanical thermal analyzer (DMTA), and a tensile tester. Each composite consisted of two phases: the NR phase and the NBR/AO-80 phase. There was partial compatibility between the NR phase and the NBR/AO-80 phase, and the NR/NBR/AO-80 (50/50/20) composite exhibited a co-continuous morphology. Strain-induced crystallization occurred in the NR phase at strains higher than 200%, and strain-induced orientation appeared in the NBR/AO-80 phase with the increase of strain from 100% to 500%. The composites had a special stress–strain behavior and mechanical properties because of the simultaneous strain-induced orientation and strain-induced crystallization. In the working temperature range of a seismic isolation bearing, the composites (especially the NR/NBR/AO-80 (50/50/20) composite) presented a high loss factor, high area of loss peak (TA), and high hysteresis energy. Therefore, the NR/NBR/AO-80 rubber composites are expected to have important application as a high-performance damping material for rubber bearing.  相似文献   

8.
梁玉蓉  谭英杰  张剑平  张涛  王林艳 《橡胶工业》2018,65(12):1325-1330
通过熔体插层法制备氯丁橡胶/有机黏土纳米复合材料(CRCNs),利用偏光显微镜观察CRCNs在不同应变条件下微观结构的变化。主要研究有机黏土对CRCNs应变诱导结晶行为的影响,并通过XRD和SEM表征了CRCNs的微观结构。结果表明: 当有机黏土含量为5 phr时,CRCNs的综合力学性能最优。随着应变的增加,CRCNs的应力也在增加;当应变达到一定值时, CRCNs的应力迅速增加,应变诱导结晶集中产生。随着有机黏土含量的增加, CRCNs拉伸诱导结晶行为在高应变条件下产生。分析原因是氯丁橡胶基体中有机黏土与橡胶分子的插层结构逐渐减少,诱导结晶能力变弱。  相似文献   

9.
国产稀土异戊橡胶的性能   总被引:3,自引:0,他引:3  
研究了国产稀土异戊橡胶(NdIR)生胶、硫化胶的的应变/应力、混炼、生热以及磨耗性能,并与天然橡胶(NR)和俄罗斯产钛系异戊橡胶(TiIR)进行了对比。结果表明:当顺式-1,4结构含量和门尼粘度超过临界值时,异戊橡胶生胶能产生"应变诱导结晶"现象。NdIR的硫化特性与NR和TiIR相当,且炭黑分散性和物理机械性能也与二者接近。从动态粘弹谱图可以预测,NdIR硫化胶的抗湿滑性优于NR和TiIR,滚动阻力接近NR和TiIR,是一种值得期待的适宜轮胎使用的新型胶种。  相似文献   

10.
Yoshihide Fukahori 《Polymer》2010,51(7):1621-866
The author proposed new models and concept for the self-reinforcement of NR. The first model indicates that general rubber vulcanizate consists of the heterogeneous structure, partially continuous cross-linked phase (75%) and continuous uncross-linked phase (25%). In addition, the author proposed other new models and concept for the strain-induced crystallization in vulcanized NR, in which the strain-induced crystallization takes place in the uncross-linked phase in cross-linked rubber. In the uncross-linked phase under large extension, molecular flow and orientation occur due to the very high compressive, shear and tensile stresses generated by the surrounding hard cross-linked phases, which makes the strain-induced crystallization possible in the uncross-linked phase. As macroscopic extension increases, the crystallization spreads over the whole uncross-linked phases, thus the uncross-linked phase changes its character from original soft rubber to the strong super network consisting of a bundle of extended molecules interconnected at the crystals. The characteristic phenomena observed in the stress-strain relation of NR such as the stress-upturn, high tensile strength and large stress-softening (Mullins effect) can be reasonably explained using these models and concepts.  相似文献   

11.
A stroboscopic X-ray diffraction machine is described that allows studying kinetics aspects of strain-induced crystallization in natural rubber. Besides conventional mechanical cycling in extension, samples may be submitted to periodic extension cycling over a 0.05 Hz–30 Hz frequency range and for various amplitudes of elongation. Pertinent parameters as crystalline content, crystallite orientation and segmental order parameter for the amorphous fraction are determined. The existence of a regulation process of the strain experienced by the chains that remain molten due to the phenomenon of strain-induced crystallization is clearly demonstrated during conventional mechanical cycling at low deformation rate. Melting retardation is shown to lead to an equalization of crystalline content in conditions of periodic cycling of moderate amplitude and below some average elongation. On the other hand, crystallization appears to be a rapid process subsisting up to the maximal cycling frequency corresponding to a stretching time of 17 ms. This is confirmed by periodic cycling of higher amplitude that suggests that strain-induced crystallization may appear within millisecond time. An approximate logarithmic dependence of the crystalline content and elongation of the amorphous fraction upon stretching time is further found.  相似文献   

12.
The improvement of X-ray diffraction techniques since the last ten years allowed a renewal of the study of strain-induced crystallization in natural rubber. In particular real-time measurements are now commonplace. However, due to experimental difficulties, the exploitation of the X-ray data as far as the strain state of the remaining molten fraction is concerned has been left aside. Indeed the knowledge of the local extension of the molten chains is crucial for understanding the peculiar stress behavior observed during the crystallization process. This paper presents a systematic study of this parameter during mechanical cycling performed at various temperatures. It is shown that crystallization limits the amplitude of strain endured by the molten fraction during traction. This process of strain regulation may be one explanation for the protective effect of crystallization against tearing. A precise evaluation of the contribution of the molten fraction to the retraction force during mechanical cycling is made. The role of crystallites as nanofillers may be quantified this way.  相似文献   

13.
Shigeyuki Toki 《Polymer》2003,44(19):6003-6011
Molecular orientation and strain-induced crystallization of vulcanized natural rubbers (by sulfur and peroxide) and synthetic polyisoprene rubber (by sulfur) during uniaxial deformation at 0 °C were studied by in situ synchrotron wide-angle X-ray diffraction. The high intensity of synchrotron X-rays and new image analysis methods made it possible to estimate the mass fractions of strain-induced crystals and amorphous chains in both oriented and unoriented states. Most of the polymer chains (∼75%) were found to be in the random coil state even at large strains (>5.0). Only about 5% the amorphous chains were oriented, whereas the rest of the chains (∼20%) were in the crystalline phase. Sulfur vulcanized and peroxide vulcanized natural rubbers did not exhibit notable differences in structure and property relationships. In contrast, synthetic polyisoprene rubber showed a different behavior of deformation-induced structural changes, which can be attributed to the difference in cross-link topology. Our results indicated that strain induces a network of microfibrillar crystals in both natural and synthetic polyisoprene rubbers due to the inhomogeneity of cross-link distribution that is responsible for their elastic properties.  相似文献   

14.
Po-Hou Sung  Shin-Yu Wu 《Polymer》1998,39(26):7033-7039
Jointed interpenetrating polymer networks (jointed-IPN) of epoxy resin and polydimethylsiloxane (PDMS) were synthesized using polydimethyl- siloxane-,ω-diol as the reactive modifier. Since this modifier is fully compatible with the epoxy resins, no phase separation (rubber domain) occurred in the final cured samples. The tree-leaf-type crystals, due to the strain-induced crystallization, were observed in both tensile as well as fracture samples. Although there is no appropriate rubber domain, the experimental results indicate that strain-induced crystallization and the crosslinking density effects of PDMS modified epoxy resins could improve the fracture energy significantly.  相似文献   

15.
Summary Natural rubber vulcanizates with high primary molecular weight were prepared by mixing raw rubber and dicumyl peroxide in benzene followed by freeze-drying. The stress-strain properties of these vulcanizates were quite different from those prepared by conventional mastication method. The important characteristics of these vulcanizates is high tensile modulus, high tensile strength, large hysteresis loss, and higher degree of strain-induced crystallization. The difference in the stress-strain behavior between these rubbers and conventional vulcanizates are discussed from the standpoint of the network structure.  相似文献   

16.
Different network structures of vulcanized polyisoprene rubbers were studied by in-situ ESR and synchrotron X-ray during deformation to analyze the rupture, orientation, and strain-induced crystallization of polymer chains and network points. Rupture of network points occur, depending on network structure, and create an un-reversible change in vulcanized rubber. The flexibility of network points affects the possibility of rupture, polymer orientation and strain-induced crystallization. Peroxide vulcanized network is rigid and un-rupturable. Poly-sulfide rich vulcanized network is more flexible and less rupturable than mono-sulfide rich vulcanized network. Chain flexibility and rupturability of network points affect the strain-induced crystallization and stress-strain relation.  相似文献   

17.
Bohumil Meissner 《Polymer》2003,44(16):4611-4617
A previously proposed and successfully tested constitutive equation denoted by the ABGIL code (a combination of the Arruda-Boyce equation based on the Langevin elasticity theory and a constraint term based on tube theories; strain-induced increase in the finite extensibility parameter is assumed) has been found to provide a good basis for quantitative interpretation of the stress-strain data recently obtained by Mott and Roland on double networks of natural rubber, prepared by introducing additional crosslinks (second network) into a first network stretched to various extents. Experimental information on properties of the first and second networks has been used to obtain their ABGIL parameters and to calculate, under the common assumption of additivity of contributions, the stress-strain properties and residual stretch of the resulting double networks. The predictive ability of the ABGIL equation has been found to be very good. Effects of the finite extensibility of network chains appear to be significant in double networks while the possible role of orientational crystallization cannot be excluded.  相似文献   

18.
两种橡胶/有机累托石纳米复合材料的结构与性能   总被引:1,自引:0,他引:1  
比较了用熔体法制备的有机累托石(OR)/丁苯橡胶(SBR)以及有机累托石(OR)/天然橡胶(NR)2种纳米复合材料的结构与性能.TEM和XRD对材料的分析显示,由于橡胶基体的性质差异,OR/SBR为典型的插层型结构,而OR/NR为插层型和部分剥离型混合结构.应力应变行为的研究表明,随着OR用量的增加,OR/SBR的拉伸强度和拉断伸长率均增大,这主要是分子链滑移和填料的取向造成的.对于拉伸结晶型橡胶NR,由于部分剥离型填料的增强作用,NR的定伸应力随填料用量的增加而逐渐提高.由于对结晶的阻碍作用,当OR用量为20份时,OR/NR的拉伸强度有所降低.纳米累托石的加入可以显著提高SBR和NR的硬度和撕裂强度.热失重分析表明,OR/橡胶纳米复合材料与相应的纯橡胶相比,热稳定性提高,在NR体系中更为显著.  相似文献   

19.
The relationship between the network structure and strain-induced crystallization in un-vulcanized as well as vulcanized natural rubbers (NR) and synthetic poly-isoprene rubbers (IR) was investigated via synchrotron wide-angle X-ray diffraction (WAXD) technique. It was found that the presence of a naturally occurring network structure formed by natural components in un-vulcanized NR significantly facilitates strain-induced crystallization and enhances modulus and tensile strength. The stress-strain relation in vulcanized NR is due to the combined effect of chemical and naturally occurring networks. The weakness of naturally occurring network against stress and temperature suggests that vulcanized NR has additional relaxation mechanism due to naturally occurring network. The superior mechanical properties in NR compared with IR are mainly due to the existence of naturally occurring network structure.  相似文献   

20.
Weixin Lin 《Polymer》2004,45(14):4939-4943
A series of high-resolution solid-state 13C NMR experiments were performed on both unstretched and in situ stretched natural rubber samples. From the 13C CP/MAS spectra, it was found that natural rubber does form small crystals at room temperature though the degree of crystallinity is very small. Furthermore, from the 13C DD/MAS spectra, the crystalline signals were found to increase with the increase of draw ratio. 13C spin-lattice relaxation time (T1) and 1H spin-spin relaxation time (T2) of in situ stretched natural rubber were measured for the first time, which provided further evidences for the conclusion that there exist crystals in both stretched and unstretched natural rubber samples. Quantitative 13C NMR measurements indicated that strain-induced crystallization occurs when the draw ratio reaches about 2.0 and the maximum crystallinity of our natural rubber samples can be as high as 19.3% upon stretching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号