首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— High‐performance organic light‐emitting diodes (OLEDs) are promoting future applications of solid‐state lighting and flat‐panel displays. We demonstrate here that the performance demands for OLEDs are met by the PIN (p‐doped hole‐transport layer/intrinsically conductive emission layer/n‐doped electron‐transport layer) approach. This approach enables high current efficiency, low driving voltage, as well as long OLED lifetimes. Data on very‐high‐efficiency diodes (power efficiencies exceeding 70 lm/W) incorporating a double‐emission layer, comprised of two bipolar layers doped with tris(phenylpyridine)iridium [Ir(ppy)3], into the PIN architecture are shown. Lifetimes of more than 220,000 hours at a brightness of 150 cd/m2 are reported for a red PIN diode. The PIN approach further allows the integration of highly efficient top‐emitting diodes on a wide range of substrates. This is an important factor, especially for display applications where the compatibility of PIN OLEDs with various kinds of substrates is a key advantage. The PIN concept is very compatible with different backplanes, including passive‐matrix substrates as well as active‐matrix substrates on low‐temperature polysilicon (LTPS) or, in particular, amorphous silicon (a‐Si).  相似文献   

2.
Abstract— A low‐cost active‐matrix backplane using non‐laser polycrystalline silicon (poly‐Si) having inverse‐staggered TFTs with amorphous‐silicon (a‐Si) n+ contacts has been developed. The thin‐film transistors (TFTs) have a center‐offset gated structure to reduce the leakage current without scarifying the ON‐currents. The leakage current of the center‐offset TFTs at Vg = ?10 V is two orders of magnitude lower than those of the non‐offset TFTs. The center‐offset length of the TFTs was 3 μm for both the switching and driving TFTs. A 2.2‐in. QQVGA (1 60 × 1 20) active‐matrix organic light‐emitting‐diode (AMOLED) display was demonstrated using conventional 2T + 1C pixel circuits.  相似文献   

3.
A new feedback current programming architecture is described, which is compatible with active matrix organic light‐emitting diode (AMOLED) displays having the 2T1C pixel structure. The new pixel programming approach is compatible with all TFT technologies and can compensate for non‐uniformities in both threshold voltage and carrier mobility of the pixel OLED drive TFT. Based on circuit simulations, a pixel drive current of less than 10 nA can be programmed in less than 50 µ. This new approach can be implemented within an AMOLED external or integrated display data driver.  相似文献   

4.
Abstract— Organic light‐emitting diodes (OLEDs) having multiple organic layers were fabricated to analyze the physical phenomena occurring in an OLED according to the amplitude of the applied voltage. The staircase voltage with both an increasing period and a constant period was designed and applied to an OLED. The displacement current began to change at a voltage where the conduction current began to change, and partly originated from the formation of space charge due to the low mobility of the majority carrier. The displacement current was shown to be constant at low voltage and decreased after showing a maximum value as the applied voltage increased. The exact voltage for the injection of two types of carriers and light emission could be obtained from the variation in the displacement current.  相似文献   

5.
Abstract— Red‐emitting organic electroluminescent devices have been developed that provide exceptional stability, efficiency, and color chromaticity, and which operate at a lower drive voltage. We have identified several superior host‐dopant systems, which, to the best of our knowledge, provide devices with outstanding performance. These devices show projected operational lifetimes (20 mA/cm2), under an ambient temperature, of >25,000 hours and 2000–8000 hours at elevated temperatures (85 and 70°C).  相似文献   

6.
Abstract— A nanocrystalline electron‐transport material [ET68] was introduced into organic light‐emitting devices (OLEDs). By integrating a p‐doped transport system and phosphorescent emitters, a very bright and stable device could be obtained. Furthermore, 40% saving in power consumption can be achieved when the efficient pixels with ET68 were applied to AMOLEDs.  相似文献   

7.
Abstract— Solar‐cell‐integrated organic light‐emitting diodes (OLEDs) were fabricated with both high contrast ratio and energy‐recycling ability. However, the luminous efficiency of the integrated devices is reduced to 50% of that of conventional top‐emitting OLEDs. A novel structure to recover the luminous efficiency from 50% to near 85% by applying a distributed Bragg reflector (DBR) made of 20 layers of GaN/AlN was demonstrated. It saves about 40% of the electric power than that of a device without a DBR. The contrast ratio remains high compared to that of conventional OLEDs. In this paper, simulations were conducted first to prove our models and assumptions. Then, two types of thin‐film solar cells — CdTe and CIGS solar cells — were used. They had different contrast ratios as well as viewing‐angle properties. Finally, the emission spectrum was calculated to be 11 nm FWHM, which is narrower than that for the emission spectrum of a typical microcavity OLED and has the advantage of having saturated colors.  相似文献   

8.
We report outstanding electroluminescence properties of high‐efficiency blue cadmium‐free quantum dot light‐emitting diodes (QD‐LED). External quantum efficiency (EQE) of 14.7% was achieved for QD‐LED emitting at 428 nm. Furthermore, we developed high‐efficiency and narrow wavelength emission zinc selenide (ZnSe) nanocrystals emitting at 445 nm and achieved QD‐LED with an EQE of 10.7%. These new QDs have great potential to be used in next‐generation QD‐LED display with wide color gamut.  相似文献   

9.
Abstract— Active‐matrix organic light‐emitting diode (AMOLED) displays have gained wide attention and are expected to dominate the flat‐panel‐display industry in the near future. However, organic light‐emitting devices have stringent demands on the driving transistors due to their current‐driving characteristics. In recent years, the oxide‐semiconductor‐based thin‐film transistors (oxide TFTs) have also been widely investigated due to their various benefits. In this paper, the development and performance of oxide TFTs will be discussed. Specifically, effects of back‐channel interface conditions on these devices will be investigated. The performance and bias stress stability of the oxide TFTs were improved by inserting a SiOx protection layer and an N2O plasma treatment on the back‐channel interface. On the other hand, considering the n‐type nature of oxide TFTs, 2.4‐in. AMOLED displays with oxide TFTs and both normal and inverted OLEDs were developed and their reliability was studied. Results of the checkerboard stimuli tests show that the inverted OLEDs indeed have some advantages due to their suitable driving schemes. In addition, a novel 2.4‐in. transparent AMOLED display with a high transparency of 45% and high resolution of 166 ppi was also demonstrated using all the transparent or semi‐transparent materials, based on oxide‐TFT technologies.  相似文献   

10.
Abstract— Balanced charge injection is essential for highly efficient and stable OLEDs. Various cathode materials, such as elemental metals, metal alloys, and metal compounds, have been adopted to facilitate electron injection. Currently, composite cathodes utilizing an electron‐injection layer and an air‐stable metal, such as LiF/Al, is the most common choice. This article will review the progress of efficient vacuum‐evaporated cathodes for OLEDs and their mechanisms.  相似文献   

11.
Abstract— Tris‐(8‐hydroxyqunoline) aluminum (Alq3)‐based organic light‐emitting devices (OLEDs) using different thickness of 2,9‐Dimethyl‐4,7‐diphenyl‐1,110‐phenanthorline (BCP) as a hole‐blocking layer inserted both in the electron‐ and hole‐transport layers have been fabricated. The devices have a configuration of indium tin oxide (ITO)/m‐MTDATA (80 nm)/BCP (X nm)/NPB (20 nm)/Alq3 (40 nm)/BCP (X nm)/Alq3 (60 nm)/Mg: Ag (200 nm), where m‐MTDATA is 4, 4′, 4″‐Tris(N‐3‐methylphenyl‐N‐phenyl‐amino) triphenylamine, which is used to improve hole injection and NPB is N,N′‐Di(naphth‐2‐yl)‐N,N′‐diphenyl‐benzidine. X varies between 0 and 2 nm. For a device with an optimal thickness of 1‐nm BCP, the current and power efficiencies were significantly improved by 47% and 43%, respectively, compared to that of a standard device without a BCP layer. The improved efficiencies are due to a good balance between the electron and hole injection, exciton formation, and confinement within the luminescent region. Based on the optimal device mentioned above, the NPB layer thickness influences the properties of the OLEDs.  相似文献   

12.
We have demonstrated that carrier injection and transporting can be fine‐tuned via gradient p‐doping and n‐doping in organic light‐emitting diodes. The doping profile of gradient doping in transporting layer is ultrahigh at the electrode side, declining gradually with the depth into the device until the emission layer. This not only ensures perfect charge injection from electrode to organic transporting layer but also proves an efficient charge transport for light emission. It is proposed that low doping ratio close to the emission layer may avoid possible quenching of excitons by the diffusion of dopant as well. A device based on gradient doping has been proved to obtain better carrier injection and achieve higher external quantum efficiency. To get smoother charge injection and transporting, and simplify the fabrication process, we have developed a nonlinear cross‐fading doping in transporting layer, which has been demonstrated to further enhance the current density characteristics.  相似文献   

13.
Abstract— An efficient pure blue multilayer organic light‐emitting diode employing 1,4‐bis[2‐(3‐N‐ethylcarbazoryl)vinyl]benzene (BCzVB) doped into 4,4′‐N,N′‐dicarbazole‐biphyenyl (CBP) is reported. The device structure is ITO (indium tin oxide)/TPD (N,N′‐diphenyl‐N,N′‐bis (3‐methylphenyl)‐1,1′biphenyl‐4,4′diamine)/CBP:BCzVB/Alq3 (tris‐(8‐hydroxy‐quinolinato) aluminum)/Liq (8‐hydroxy‐quinolinato lithium)/Al; here TPD was used as the hole‐transporting layer, CBP as the blue‐emitting host, BCzVB as the blue dopant, Alq3 as the electron‐transporting layer, Liq as the electron‐injection layer, and Al as the cathode, respectively. A maximum luminance of 8500 cd/m2 and a device efficiency of 3.5 cd/A were achieved. The CIE co‐ordinates were x = 0.15, y = 0.16. The electroluminescent spectra reveal a dominant peak at 448 nm and additional peaks at 476 nm with a full width at half maximum of 60 nm. The Föster energy transfer and, especially, carrier trapping models were considered to be the main mechanism for exciton formation on BCzVB molecules under electrical excitation.  相似文献   

14.
Abstract— Top‐emitting organic light‐emitting devices (OLEDs) have several technical merits for application in active‐matrix OLED displays. Generally, stronger microcavity effects inherent with top‐emitting OLEDs, however, complicate the optimization of device efficiency and other viewing characteristics, such as color and viewing‐angle characteristics. In this paper, using the rigorous classical electromagnetic model based on oscillating electric dipoles embedded in layered structures, the emission characteristics of top‐emitting OLEDs as a function of device structures will be analyzed. From comprehensive analysis, trends in the dependence of ewmission characteristics on device structures were extracted, and, accordingly, a general methodology for optimizing viewing characteristics of top‐emitting OLEDs for display applications will be suggested. The effectiveness of the analysis and the methodology was confirmed by experimental results.  相似文献   

15.
Abstract— A novel display system, refered to as an LFD (liquid crystal with fine‐pitch light‐source display) is proposed. In an LFD, an auxiliary light source patterned with a fine pitch is attached to a reflective liquid‐crystal display (LCD), and a light shield is formed on the observer's side of the light source. A vertical‐alignment LCD (VA‐LCD) is attached as the reflective LCD, and an organic light‐emitting diode (OLED) is attached as the fine‐pitch light source. An LFD can produce bright, high‐contrast images under any ambient light. A test sample was built and its display characteristics confirmed.  相似文献   

16.
Abstract— Blue phosphorescent organic light‐emitting devices (PhOLEDs) using 1,3,5‐tris(N‐phenyl‐ benzimiazole‐2‐yl)benzene [TPBI] as the host and bis((4,6‐difluorophenyl)‐pyridinate‐N,C2′)picolinate [FIrpic] as the dopant in the emitter were fabricated with different treatments of the hole‐transport layers and doping levels. Among the experimental devices, the best electroluminescent characteristics were obtained in the device with the combined hole‐transport layer of N,N′‐diphenyl‐N,N′‐bis‐[4‐ (phenyl‐m‐tolylamino)‐phenyl]‐biphenyl‐4,4′‐diamine [DNTPD]/1, 1‐bis‐(di‐4‐polyaminophen yl)‐ cyclo‐hexane [TAPC] and a doping level of 10‐vol.% FIrpic. The device with a structure of DNTPD/TAPC/TPBI:Firpic (10%) showed a luminance of 1300 cd/m2 at an applied voltage of 10 V, a maximum current efficiency of 18 cd/A, and color coordinates of (0.17, 0.43) on the Commission Internationale de I'Eclairage (CIE) chart.  相似文献   

17.
Quantum‐dot light‐emitting diodes (QLEDs) are promising candidates for next generation displays. White QLEDs which can emit red, green and blue colors are particularly important; this is because the combination of white QLEDs and color filters offers a practical solution for high‐resolution full‐color displays. In this work, we demonstrate all‐solution processed three‐unit (red/green/blue) white tandem QLEDs for the first time. The white tandem devices are achieved by serially connecting the red bottom sub‐QLED, the green middle sub‐QLED and the blue top sub‐QLED using the inter‐connecting layer (ICL) based on ZnMgO/PEDOT:PSS heterojunction. With the proposed ICL, the two‐unit tandem QLEDs exhibit a high current efficiency of 22.22 cd/A, while the three‐unit white QLEDs exhibit evenly separated red, green and blue emission with a CIE coordinate of (0.30, 0.44), a peak current efficiency of 4.75 cd/A and a high luminance of 4206 cd/m2. Displays based on the developed white QLEDs exhibit a wide color gamut of 114% NTSC. This work confirms the effectiveness of the proposed ZnMgO/PEDOT:PSS ICL and the feasibility of making all‐solution processed tandem white QLEDs by using the proposed ICL.  相似文献   

18.
This study reports on the synthesis of new thermally cross‐linkable copolymers containing a reactive cross‐linking comonomer. Synthesized polymers showed narrow molecular weight distribution (polydispersity) between 1.18 to 1.22 and 54 to 67% monomer conversion and incorporation of 2 to 7 mol% vinylbenzylcyclobutene comonomer. The polymer was soluble in nonpolar organic solvents such as chloroform, dichloromethane, toluene, and chlorobenzenes, and when cross‐linked, showed resistance to solubility in the previously listed solvents. The cross‐linked films exhibited uniform surface roughness below 1 nm. A polymer containing ~3.6 mol% vinylbenzylcyclobutene was thermally cross‐linked and evaluated as a hole‐transporting layer in green organic light‐emitting diode devices. The devices showed a maximum current efficiency of 39.5 cd/A at a current density of 2.7 mA/cm2 and a brightness of 1000 cd/m2 with an International Commission on Illumination coordinate (0.33, 0.62). The device performances are found comparable with the ones with the conventional hole‐transporting layer material, NPD.  相似文献   

19.
Abstract— We propose a new pixel design for active‐matrix organic light‐emitting diodes (AMOLEDs) employing five polycrystalline thin‐film transistors (poly‐Si TFTs) and one capacitor, which decreases the data current considerably in order to reduce the charging time compared with that of conventional current‐mirror structures. Also, the new pixel design compensates the threshold‐voltage degradation of OLEDs caused by continuous operation and the non‐uniformity of poly‐Si TFTs due to excimer‐laser annealing. The proposed pixel circuit was verified by SPICE simulation, based on measured TFT and OLED characteristics. We also propose current‐data‐driver circuitry that reduces the number of shift‐register signals for addressing the current data driver by one‐half.  相似文献   

20.
We have fabricated a novel type of substrate for organic light‐emitting diodes (OLEDs) to improve the light out‐coupling efficiency. It was fabricated by forming an excellent flat layer using a high‐refractive‐index B2O3‐SiO2‐Bi2O3 frit glass on the light diffusive glass substrate. By using this substrate, we have sufficiently reduced the total internal reflection of OLEDs, and we successfully obtained more than 1.9 times higher light out‐coupling efficiency without spectral changes and viewing angle dependency. Furthermore, we have also successfully demonstrated 50 × 50 mm large‐area white OLEDs with this novel substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号