共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical looping glycerol reforming for hydrogen production by Ni@ZrO2 nanocomposite oxygen carriers
Bo Jiang Lin Li Zhoufeng Bian Ziwei Li Yang Sun Zhehao Sun Dawei Tang Sibudjing Kawi Binlin Dou Maria A. Goula 《International Journal of Hydrogen Energy》2018,43(29):13200-13211
The research describes the synthesis of nanocomposite Ni@ZrO2 oxygen carriers (OCs) and lanthanide doping effect on maintaining the platelet-structure of the nanocomposite OCs. The prepared OCs were tested in chemical looping reforming of glycerol (CLR) process and sorption enhanced chemical looping reforming of glycerol (SE-CLR) process. A series of characterization techniques including N2 adsorption-desorption, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), high resolution transmission electron microscopy (HRTEM), H2 temperature-programmed reduction (H2-TPR), H2 pulse chemisorption and O2 temperature-programmed desorption (O2-TPD) were used to investigate the physical properties of the fresh and used OCs. The results show that the platelet-stack structure of nanocomposite OCs could significantly improve the metal support interaction (MSI), thus enhancing the sintering resistance. The effect of lanthanide promotion on maintaining this platelet-stack structure increased with the lanthanide radius, namely, La3+ > Ce3+ > Pr3+ > Yb3+. Additionally, the oxygen mobility was also enhanced because of the coordination of oxygen transfer channel size by doping small radius lanthanide ions. The CeNi@ZrO2 showed a moderate ‘dead time’ of 220 s, a high H2 selectivity of 94% and a nearly complete glycerol conversion throughout a 50-cycle CLR test. In a 50-cycle SE-CLR stability test, the CeNi@ZrO2CaO showed high H2 purity of 96.3%, and an average CaCO3 decomposition percentage of 53% without external heating was achieved. 相似文献
2.
Hydrogen (H2) production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative process which utilizes fossil fuels as feed stocks. This process occurs in three steps by employing an oxygen carrier (OC), which is generally a transition metal. As the OC plays an important role, its selection should be done after carefully considering the chemical and physical properties of the material. In this study, various candidate materials for use in a TRCLR process, with methane (CH4) as a fuel stock, were investigated. The results show that the iron (Fe)- and molybdenum (Mo)-based OCs oxidize CH4 completely in the FR at low temperatures. In terms of H2 yield, tungsten (W)-based OCs produce the highest yield, ~3.9 mol-H2/mol-CH4. The equilibrium oxygen partial pressures and the solid circulation rates are the highest for Fe-based OCs. The oxygen carrying capacity of Fe-based OCs is relatively high while its price is low. Therefore, among the OCs investigated, Fe-based OCs were identified as the preferred OC option for a TRCLR process. 相似文献
3.
Wu Qin Jianye Wang Laixing Luo Lu Liu Xianbin Xiao Zongming Zheng Shuai Sun Xiaoying Hu Changqing Dong 《International Journal of Hydrogen Energy》2018,43(29):12985-12998
This work focused on chemical looping reforming (CLR) of ethanol-containing wastewater using iron-based oxygen carrier for high ratio H2/CO syngas. Effects of various operating parameters on CLR experiments have been investigated. High temperature promotes the reactivity of oxygen carrier and release more lattice oxygen for CLR of ethanol-containing wastewater to realize maximum carbon conversion. 5% ethanol-containing wastewater, closed to the actual concentration of alcohol distillery wastewater, favors syngas yield. Ethanol-containing wastewater CLR processes could be divided into three stages, including the catalytic cracking, combination of catalytic cracking and reforming, and mainly catalytic reforming of ethanol, corresponding to three reduction periods Fe2O3 → Fe3O4, Fe3O4 → Fe2O2.45, and Fe2O2.45 → FeO, respectively. The whole process of ethanol-containing organic wastewater CLR is exothermic. Reaction heat released from the oxidation process of the reduced oxygen carrier can meet heat demand for CLR process. Ethanol-containing organic wastewater CLR opens up a new direction for hydrogen generation and waste treatment. 相似文献
4.
Luis F. de Diego María Ortiz Francisco García-Labiano Juan Adánez Alberto Abad Pilar Gayán 《Journal of power sources》2009,192(1):27-34
This work presents the experimental results obtained during auto-thermal chemical-looping reforming (CLR) in a 900 Wth circulating fluidized bed reactor under continuous operation using methane as fuel. Two oxygen carriers based on NiO and supported on γ-Al2O3 and α-Al2O3 were used during more than 50 h of operation with each oxygen carrier. During operation the effect of different operating variables, like fuel reactor temperature, H2O/CH4 molar ratio and solid circulation rate, on CH4 conversion and gas product distribution was analyzed. It was found that in all operating conditions CH4 conversion was very high (>98%) and the most important variable affecting to the gas product distribution was the solid circulation rate, that is, NiO/CH4 molar ratio. Similar gas product distribution was obtained working with both oxygen carriers although at different NiO/CH4 molar ratios. The oxygen carrier of NiO on α-Al2O3 needed lower NiO/CH4 molar ratio to reach the same gas product composition than the oxygen carrier of NiO on γ-Al2O3. Working at optimal operating conditions, 2.5 moles of H2 per mol of CH4 could be obtained in this process.During operation the oxygen carrier particles maintained their physical and chemical properties. These results suggest that these oxygen carriers could have a high durability, being suitable oxygen carriers for a CLR system. 相似文献
5.
《能源学会志》2014,87(2):152-162
The self-sufficient chemical looping reforming of glycerol (CLRG) utilizes the same basic principles as chemical looping combustion (CLC), the main difference being that the desired product in CLRG is not heat but H2. Therefore, in the CLR process the O/C ratio is kept low to prevent the complete oxidation of glycerol to H2O. A systematic thermodynamic study of CLRG using metal oxide oxygen carriers (NiO, CuO, CoO, Co3O4, Mn3O4, Mn2O3 and Fe2O3) is performed to analyze the product yield, carbon deposition and energy requirements at different temperatures and pressures. The calculation results show higher temperatures promote, but higher pressures inhibit H2 production. Favorable conditions (800 °C and 1 atm) are obtained for H2 manufacture from CLRG process. CuO is the best performing oxygen carrier followed by Mn-based oxygen carriers, while Fe2O3 is the least preferred oxygen carrier for CLRG. These results obtained in this theoretical study can offer helpful information for CLRG experimental tests. 相似文献
6.
This study is part of a program assessing the suitability of chemical looping for direct combustion of Victorian brown coal. The performance of NiO as an oxygen carrier in presence of a dried Victorian brown coal was assessed during five alternating cycles of reduction and oxidation in a CO2 environment using a TGA. The experiments indicate a 4.4-7.5% weight loss of the oxygen carrier per cycle. Preliminary SEM-EDX and FACTSAGE predictions also indicate weight loss, but not to the same extent. The percentage of combustion of coal achieved at the 5th cycle was approximately 67%. Cycle 2 showed maximum reactivity (during reduction) with a decreasing trend during the subsequent cycles. These initial experiments did not reveal much agglomeration between ash and NiO although longer duration experiments are required to explore this issue further. 相似文献
7.
Tao Liu Shunxuan Hu Zhongliang Yu Jiejie Huang JiaZhou Li Zhiqing Wang Yitian Fang 《International Journal of Hydrogen Energy》2017,42(16):11038-11046
Coal-direct chemical looping hydrogen generation (CLHG) is a promising process for hydrogen production with high coal conversion efficiency and low carbon footprint. In this work, experiments on coal-direct CLHG process were carried out using K2CO3 modified Fe2O3/ZrO2 as oxygen carrier (OC) and Shenmu (SM) char as fuel in a fixed-bed reactor. The effect of char/OC mass ratio on CO2/CO volume ratio, H2 production and phase transformation was investigated. Multicycle tests with SM char and deashed SM char were conducted to investigate the activity stability of OC and the reason for the deactivation of OC. The results confirm the feasibility of coal-direct CLHG process. Higher char/OC mass ratio could enhance the H2 production and decrease the CO2/CO volume ratio and oxidation state of iron oxides in OC. In the multicycle tests with SM char, carbon conversion and H2 production remained almost constant during the first 2 redox cycles and then decreased abruptly in the 3rd cycle. During the 3 cycles, the phases of OC residues remained unchanged and no detectable surface sintering was observed. Furthermore, the K contents of residues decreased slightly. In the multicycle tests with deashed SM char, the carbon conversion and accumulation H2 production were stable during the first 10 cycles and then decreased slowly. Some morphology features changes appeared during the 11 cycles, but no obvious surface sintering was observed. The K contents of residues declined by 2/3 after the 10th cycle. 相似文献
8.
Chemical looping combustion (CLC) is a novel technology where CO2 is inherently separated during combustion. Due to the existence of sulfur contaminants in the fossil fuels, the gaseous products of sulfur species and the interaction of sulfur contaminants with oxygen carrier are a big concern in the CLC practice. The reactivity of NiO/Al2O3 oxygen carrier reduction with a gas mixture of CO/H2 and H2S is investigated by means of a thermogravimetric analyzer (TGA) and Fourier Transform Infrared spectrum analyzer in this study. An X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to evaluate the phase characterization of reacted oxygen carrier, and the formation mechanisms of the gaseous products of sulfur species are elucidated in the process of chemical looping combustion with a gaseous fuel containing hydrogen sulfide. The results show that the rate of NiO reduction with H2S is higher than the one with CO. There are only Ni and Ni3S2 phases of nickel species in the fully reduced oxygen carrier, and no evidence for the existence of NiS or NiS2. The formation of Ni3S2 is completely reversible during the process of oxygen carrier redox. A liquid phase sintering on the external surface of reduced oxygen carriers is mainly attributed to the production of the low melting of Ni3S2 in the nickel-based oxygen carrier reduction with a gaseous fuel containing H2S. Due to the sintering of metallic nickel grains on the external surface of the reduced oxygen carrier, further reaction of the oxygen carrier with H2S is constrained, and there is no increase of the sulfidation index of the reduced oxygen carrier with the cyclical reduction number. Also, a continuous operation with a syngas of carbon monoxide and hydrogen containing H2S is carried out in a 1 kWth CLC prototype based on the nickel-based oxygen carrier, and the effect of the fuel reactor temperature on the release of gaseous products of sulfur species is investigated. 相似文献
9.
Shiwei Ma Shiyi Chen Ahsanullah Soomro Min Zhu Wenguo Xiang 《International Journal of Hydrogen Energy》2018,43(6):3154-3164
Fe2O3 is currently the most proper active metal oxide for chemical looping hydrogen generation (CLHG). However, supports are necessary to improve the reactivity and redox stability. CeO2 can enhance the oxygen mobility, leading to high redox reactivity and carbon deposition resistance, which can be an excellent alternative support for oxygen carriers. In this paper, Fe2O3/CeO2 oxygen carriers prepared by the co-precipitation method with different Fe2O3 loadings were investigated on a batch fluidized bed regarding the hydrogen yield and purity, redox reactivity and stability in CLHG with CO as fuel. The results showed that Fe6Ce4 is the best given comprehensive performance with no CO or CO2 observed in the obtained hydrogen (detection limit 0.01% in volume). The oxygen mobility property for the reducible support CeO2 and the physical contact between un-integrated Fe2O3 and CeO2 could improve the reduction of Fe2O3. In addition, the formation of the hematite-like solid solution and perovskite-type CeFeO3 could bring about abundant oxygen vacancies and promote the oxygen mobility, which contributes to the elimination of carbon deposition, counteracts the negative effect of serious sintering and guarantees the reactivity and redox stability of the Fe2O3/CeO2 oxygen carriers. The Fe2O3/CeO2 oxygen carriers were characterized by carbon monoxide temperature-programmed reduction measurement and X-ray diffraction patterns, and Fe6Ce4 was also selected to be characterized by scanning electron microscopy images and energy dispersive X-ray spectrometer analysis. 相似文献
10.
《International Journal of Hydrogen Energy》2023,48(10):4035-4051
The demand for NH3 as a new energy carrier will lead to a gradual increase in its production. The Haber-Bosch process, commonly used today, has high energy consumption, high operating pressure and high CO2 emissions due to hydrogen extraction from fossil fuels. For efficient and environmentally friendly preparation of NH3, chemical looping ammonia generation (CLAG) of biomass and H2O is proposed. The selection of suitable nitrogen carriers is the key in CLAG. Since the variety of available substances is large, a systematic method is needed to perform screening efficiently. In this paper, 28 different oxide/nitride pairs were investigated. We mainly investigated the Gibbs free energy change and the equilibrium compositions in the N-absorption and N-desorption reactions. Suitable nitrogen carriers were selected by the minimum N-absorption temperature, nitrogen transport capacity, sintering resistance, price and by-product. When Al2O3/AlN was used as the nitrogen carrier, the minimum N-absorption temperature was 1371 °C, and the nitrogen transfer capacity was high. When TiO2/TiN was used as a nitrogen carrier, the minimum N-absorption temperature was 966 °C, the nitrogen transfer capacity was lower than Al2O3/AlN, and NH3 and H2 were generated simultaneously in the N-desorption step. Compared with SiO2/Si3N4, Cr2O3/Cr2N, Cr2O3/CrN, MnO/Mn5N2, Fe2O3/Fe4N, ZrO2/ZrN, and MoO2/Mo2N, Al2O3/AlN and TiO2/TiN produced less carbide in N-absorption step and had less mass decay in the cycle, making them more suitable as nitrogen carriers. Appropriately increasing the molar ratio of nitrogen carrier to carbon can improve feedstock utilization and the efficiency of CLAG. 相似文献
11.
The study of the effect of oxygen carrier content and temperature on chemical looping gasification (CLG) of Chlorella vulgaris was carried out in a fixed bed reactor. In order to obtain the characterization and optimal conditions of CLG for syngas production, this paper analyzed the product fractional yields, gaseous yields, conversion efficiency, SEM, XRD and composition analysis of oxygen carriers. The results indicated that CLG had a greater performance on gasification characteristics. When O/C increased from 0.5 to 3.0, gas yield, CO2 yield and carbon conversion efficiency increased gradually, but LHV, H2 and CH4 yields decreased. Meanwhile, CO yield and gasification efficiency increased firstly and then decreased. Oxygen carrier Fe2O3 exhibited the characteristics of step-wise reduction (Fe2O3 → Fe3O4 → FeO) in CLG process. More FeO were generated at O/C of 0.5 and then caused serious sintering and agglomeration. High temperature was helpful to improve gas yield, carbon conversion efficiency and gasification efficiency. However, higher temperature would cause sintering and then weaken the activity of oxygen carrier. Moreover, under the experimental condition, O/C of 1.0 and 800 °C were the optimal parameters to obtain a high conversion efficiency of biomass, high products yield, good LHV and great reducibility of oxygen carrier. 相似文献
12.
The double perovskite oxides (DPOs) LaSrFe2-xCoxO6 (x = 0, 0.2, 0.4, 0.6, 0.8) were investigated as oxygen carriers for the chemical looping steam methane reforming (CL-SMR). The fresh oxides were prepared by micro-emulsion method and their physical and chemical properties were characterized by X-ray diffraction, H2-temperature programmed reduction and X-ray photoelectron spectroscopy technologies. Meanwhile, isothermal reactions for methane reforming and steam splitting were carried out in a fixed-bed reactor to determine the influences of Co-substitution on the reactivity of LaSrFe2-xCoxO6. The substitution of metal Co has no obvious effect on the crystal structure of double perovskite, but induces a certain degree of Fe/Co disorder generating oxygen vacancies and/or higher oxidation states of metal cations. Synergistic interaction between surface metal ions, such as (Fe4+/Fe5+-O2--Co2+) and (Fe3+-O2--Co3+), plays a positive effect for the dissociation of methane. The activity may be more likely to be associated with the active oxygen species in connection with Co species on the DPOs surface and abundant of syngas was generated due to the concordant of methane dissociation with the lattice oxygen diffusion. Comprehensively considered, an optimal range of the degree of Co substitution is x = 0.4–0.6 for LaSrFe2-xCoxO6, probably converting 70% of CH4 into CO and H2 with molar ratio around 2:1. At the reduced states, the ability of DPOs for steam splitting is primarily associated with the oxygen vacancies after oxygen consumption. The substitution of metal Co slightly enhances the hydrogen production capacity and resistance to carbon formation, achieving the average hydrogen yields at 2.89–3.33 mmol/g oxygen carrier and 1.46–1.61 wt% of carbon depositions. 相似文献
13.
Shiwei Ma Shiyi Chen Ahsanullah Soomro Wenguo Xiang 《International Journal of Hydrogen Energy》2017,42(16):11006-11016
Chemical looping hydrogen generation (CLHG) can produce high purity hydrogen from fuel gases with inherent separation of CO2. However, the performance of oxygen carrier in CLHG varies with the support materials. In this paper, the reactivity, carbon deposition, redox stability, hydrogen yield and purity, and sintering behavior of the Fe-based oxygen carriers were analyzed to investigate the effects of supports, i.e. Al2O3, SiO2, MgAl2O4, ZrO2 and YSZ (yttrium-stabilized zirconia). The results showed that the properties of the oxygen carriers, e.g. carbon deposition, reactivity and stability, mainly depended on the support and its interaction with iron oxides. The reactivity and hydrogen yield for the oxygen carriers investigated followed the order: Fe2O3/MgAl2O4 > Fe2O3/ZrO2 > Fe2O3/YSZ > Fe2O3/Al2O3 > Fe2O3/SiO2, and the order of hydrogen purity was identical with that of hydrogen yield as a result of carbon deposition. Furthermore, the hydrogen purity of the Fe-based oxygen carriers supported by MgAl2O4, ZrO2, or YSZ could reach above 99.5% and Fe2O3/YSZ showed the lowest carbon deposition. The oxygen carriers, Fe2O3/MgAl2O4 and Fe2O3/SiO2, were selected to be characterized by SEM images and XRD patterns before and after the redox cycles. 相似文献
14.
Synthesis gas, a mixture of hydrogen and carbon monoxide, could be produced in a chemical looping process. The objective of this work is the modeling of syngas production in a fixed bed microreactor by chemical looping reforming. A perovskite oxygen carrier was used for the reduction of methane to syngas. Twenty one gas-solid kinetic models were applied to the experimental data in which their parameters were estimated using an optimization code. The results show that among all models, reaction order model is the most preferable choice with satisfactory fitting criteria. The gas-solid model was coupled with a catalytic scheme to predict not only the conversion of perovskite oxygen carrier, but also the catalytic performance of the solid particles for syngas production. The kinetic parameters of the unified model were evaluated based on the experimental data of a fixed bed reactor. Analysis of both perovskite and nickel oxide, oxygen carriers shows that perovskite particles could convert 50 times slower than those of nickel oxide. A H2/CO ratio of below 10 was obtained in a period of time. A large amount of hydrogen was produced after completing gas-solid reactions which was due to cracking of methane to carbon and hydrogen. Although hydrogen was the main outlet product afterwards, corresponding carbon formation is a problem which should be avoided. The reduction of methane was proposed before 500 s with a carbon formation of below 0.04 kg carbon per one kg of perovskite carrier. Solid reduction conversion, methane consumption and product distribution were analyzed inside the microreactor. 相似文献
15.
Kyoung-Soo Kang Chang-Hee Kim Ki-Kwang Bae Won-Chul Cho Sung-Hyun Kim Chu-Sik Park 《International Journal of Hydrogen Energy》2010
The three-reactor chemical-looping process (TRCL) for the production of hydrogen from natural gas is quite attractive for both CO2 capture and hydrogen production. The TRCL process consists of a fuel reactor, a steam reactor and an air reactor. In the fuel reactor, natural gas is oxidized to CO2 and H2O by the lattice oxygen of the oxygen carrier. In the steam reactor, the steam is reduced to hydrogen through oxidation of the reduced oxygen carrier. In the air reactor, the oxygen carrier is fully oxidized by air. In this process, the oxygen carrier is recirculated among the three reactors, which avoids direct contact between fuel, steam and air. In this study, various candidate materials were proposed for the oxygen carrier and support, and a thermal analysis of the process was performed. The oxygen carrier for the process must have the ability to split water into hydrogen in its reduced state, which is a different chemical property from that of the chemical-looping combustion medium. The selection of the oxygen carrier and support require careful consideration of their physical and chemical properties. Fe2O3, WO3 and CeO2 were selected as oxygen carriers. Thermal analysis indicated an expected hydrogen production of 2.64 mol H2 per mol CH4 under thermoneutral process conditions. The results indicated that hydrogen production was affected mainly by the steam-conversion rate. The solid-circulation rate and temperature drop in the fuel reactor were calculated for the selected oxygen carriers with different metal oxide contents and solid-conversion rates. 相似文献
16.
Mousa Nazari Mohammad Soltanieh Amir Heydarinasab Bozorgmehr Maddah 《International Journal of Hydrogen Energy》2021,46(37):19397-19420
Novel self-supported Mgy(CuxNi0.6-xMn0.4)1-yFe2O4 with (y = 0, 0.05, 0.1, 0.15, and x = 0, 0.15, 0.3, 0.45, 0.6) oxygen carriers (OCs) are synthesized through the co-precipitation method. The synthesized OCs’ properties are characterized by X-ray powder diffraction (XRD), Raman spectra, transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and Thermogravimetric Analysis (TGA). The synthesized OCs are assessed in Chemical Looping Steam Methane Reforming (CL-SMR) process subject to different mesh sizes, reaction temperatures, Steam/Carbon (S/C) molar ratios, Mg concentrations, and Cu and Ni concentrations. The characterization of the OCs and process results indicate the contributive effect of Mg incorporation on the CuxNi0.6-xMn0.4Fe2O4 support structure. The redox results reveal that Mg0.1(Cu0.3Ni0.3Mn0.4)0.9Fe2O4 OC is of the highest activity, even at low reduction temperatures. This OC exhibits the highest activity and stability with lowest coke deposition during 24 redox cycles at 650 °C and S/C = 2.5. The highest CH4 conversion of about 99.4% and H2 yield of about 84.4% are obtained. 相似文献
17.
Leonardo Riva Isabel Martínez Michela Martini Fausto Gallucci Martin van Sint Annaland Matteo C. Romano 《International Journal of Hydrogen Energy》2018,43(33):15720-15738
In this work, a techno-economic analysis of a hydrogen production plant based on the Ca-Cu process has been carried out. The simulation of the whole hydrogen production plant has been performed, including the calculation of the Ca-Cu fixed bed reactors system using a sharp front modelling approach. From the analyses carried out, it has been demonstrated that the optimal operation point from the energy performance point of view is reached when fuel needed for sorbent regeneration is entirely supplied by the off-gas from the PSA hydrogen purification unit, which corresponds to operating the plant with the minimum steam-to-carbon ratio in the reforming step. Moreover, lowering the operating pressure of the Ca-Cu system results beneficial from the hydrogen production efficiency, but the CO2 emissions and the economics worsen.The Ca-Cu based hydrogen production plant operating at a high pressure has been demonstrated to be cost efficient with respect to a benchmark hydrogen production plant based on conventional fired tubular reformer and CO2 capture by MDEA absorption. A hydrogen production cost of 0.178 €/Nm3 and a CO2 avoided cost of 30.96 €/ton have been calculated for this Ca-Cu hydrogen production plant, which are respectively 8% and 52% lower than the corresponding costs of the benchmark. 相似文献
18.
A relatively long-term experiment for chemical looping combustion of coal with NiO/Al2O3 oxygen carrier was carried out in a 10 kWth continuous reactor of interconnected fluidized beds, and 100 h of operation was reached with the same batch of the oxygen carrier. The reactivity deterioration of the oxygen carriers was present during the experimental period. The reactivity deterioration of reacted oxygen carriers at different experimental stages was evaluated using X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray fluorescence spectrometer. SEM analysis showed no significant change in the morphology of the nickel-based oxygen carrier at the fuel reactor temperature ?940 °C, but loss of surface area and porosity of reacted oxygen carriers was observed when the fuel reactor temperature exceeded 960 °C. The results show that the sintering effect have mainly contributed to the reactivity deterioration of reacted oxygen carriers in the CLC process for coal, while the effects of coal ash and sulfur can be ignored. The oxidization of reduced oxygen carrier with air was an intensive exothermic process, and the high temperature of oxygen carrier particles led to sintering on the surface of oxygen carrier particles in the air reactor. Attention must be paid to control the external circulation of oxygen carrier particles in the interconnected fluidized beds in order to efficiently transport heat from the air reactor to the fuel reactor, and reduce the temperature of oxygen carrier particles in the air reactor. Improvement of reactivity deterioration of reacted oxygen carriers was achieved by the supplement of steam into the fuel reactor. Nevertheless, NiO/Al2O3 is still one of the optimal oxygen carriers for chemical looping combustion of coal if the sintering of oxygen carrier is minimized at the suitable reactor temperature. 相似文献
19.
Thermodynamic and experimental aspects on chemical looping reforming of ethanol for hydrogen production using a Cu‐based oxygen carrier
下载免费PDF全文

Wenju Wang 《国际能源研究杂志》2014,38(9):1192-1200
An investigation on the chemical looping reforming of ethanol process using Gibbs free energy minimization method was performed. It is found that the temperature, oxygen/ethanol molar ratio (OER), and pressure have pronounced influences on the product yields in chemical looping reforming of ethanol process. The ethanol conversion and H2 yield are 100% and 2.25 mol mol?1 ethanol, respectively, at 700 °C, OER of 1 and 1 atm. The higher temperatures promote H2 and CO production, but the higher pressures and OERs have negative effect on the H2 and CO generation. Favorable operation conditions are 1 atm, 700 °C, and OER = 1. The experimental tests were carried out in a fixed bed using a Cu‐based oxygen carrier prepared by impregnation method. Working at 1 atm, the H2 concentration increased with an increase in temperature; however, it remained approximately with an increase in gas hourly space velocity. The H2/CO molar ratio was between 3 and 5 in the period of 0–30 min at 1 atm and 700 °C. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
M.M. Sarafraz Mehdi Jafarian Maziar Arjomandi Graham J. Nathan 《International Journal of Hydrogen Energy》2017,42(26):16396-16407
The relative performance of different potential liquid oxygen carriers within a novel system that can be configured for either chemical looping gasification or combustion is assessed. The parameters considered here are the melting temperature, the Gibbs free energy, reaction enthalpy, exergy and energy flows, syngas quality and temperature difference between the two reactors. Results show that lead, copper and antimony oxides are meritorious candidates for the proposed systems. Antimony oxide was found to offer strong potential for high quality syngas production because it has a reasonable oxygen mass ratio for gasification. A sufficiently low operating temperature to be compatible with concentrated solar thermal energy and a propensity to generate methane. In contrast, copper and lead oxides offer greater potential for liquid chemical looping combustion because they have higher oxygen mass ratio and a higher operating temperature, which enables better efficiency from a power plant. For all three metal oxides, the production of methane via the undesirable methanation reaction is less than 2% of the product gasses for all operating temperatures and an order of magnitude lower for lead. 相似文献