首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the possibility of fabricating quantum dot light‐emitting diodes (QLEDs) using inkjet printing technology, which is the most attractive method for the full‐color patterning of QLED displays. By controlling the quantum dot (QD) ink formulation and inkjet printing condition, we successfully patterned QLED pixels in the 60‐in ultrahigh definition TV format, which has a resolution of 73 pixels per inch. The inkjet‐printed QLEDs exhibited a maximum luminance of 2500 cd/m2. Although the performance of inkjet‐printed QLEDs is low compared with that of QLEDs fabricated using the spin‐coating process, our results clearly indicate that the inkjet printing technology is suitable for patterning QD emissive layers to realize high‐resolution, full‐color QLED displays.  相似文献   

2.
Abstract— Methods used to deposit and integrate solution‐processed materials to fabricate TFT backplanes by ink‐jet printing are discussed. Thematerials studied allow the development of an all‐additive process in which materials are deposited only where their functionality is required. The metal layer and semiconductor are printed, and the solution‐processed dielectric is spin‐coated. Silver nanoparticles are used as gate and datametals, the semiconductor used is a polythiophene derivative (PQT‐12), and the gate dielectric is an epoxy‐based photopolymer. The maximum processing temperature used is 150°C, making the process compatible with flexible substrates. The ION/IOFF ratio was found to be about 105?106, and TFT mobilities of 0.04 cm2/V‐sec were obtained. The influence of surface treatments on the size and shape of printed features is presented. It is shown that coffee‐stain effects can be controlled with ink formulation and that devices show the expected pixel response.  相似文献   

3.
Abstract— High‐performance solution‐processed oxide‐semiconductor (OS) thin‐film transistors (TFTs) and their application to a TFT backplane for active‐matrix organic light‐emitting‐diode (AMOLED) displays are reported. For this work, bottom‐gated TFTs having spin‐coated amorphous In‐Zn‐O (IZO) active layers formed at 450°C have been fabricated. A mobility (μ) as high as 5.0 cm2/V‐sec, ?0.5 V of threshold voltage (VT), 0.7 V/dec of subthreshold swing (SS), and 6.9 × 108 of on‐off current ratio were obtained by using an etch‐stopper (ES) structure TFT. TFTs exhibited uniform characteristics within 150 × 150‐mm2 substrates. Based on these results, a 2.2‐in. AMOLED display driven by spin‐coated IZO TFTs have also been fabricated. In order to investigate operation instability, a negative‐bias‐temperature‐stress (NBTS) test was carried out at 60°C in ambient air. The IZO‐TFT showed ?2.5 V of threshold‐voltage shift (ΔVT) after 10,800 sec of stress time, comparable with the level (ΔVT = ?1.96 V) of conventional vacuum‐deposited a‐Si TFTs. Also, other issues regarding solution‐processed OS technology, including the instability, lowering process temperature, and printable devices are discussed.  相似文献   

4.
Abstract— A non‐contact jet‐printed mask‐patterning process is described. By combining digital imaging with jet printing, digital lithography was used to pattern a‐Si:H‐based electronics on glass and plastic substrates in place of conventional photolithography. This digital lithographic process is capable of layer‐to‐layer registration of ±5 μm using electronic mask files that are directly jet printed onto a surface. Aminimum feature size of 50 μm was used to create 180 × 180 element backplanes having 75‐dpi resolution for display and image‐sensor applications. By using a secondary mask process, the minimum feature size can be reduced down to ~15 μm for fabrication of short‐channel thin‐film transistors. The same process was also used to pattern black‐matrix wells in fabricating color‐filter top plates in LCD panels.  相似文献   

5.
Abstract— Organic‐polymer‐based thin‐film transistors (OP‐TFTs) look very promising for flexible, large‐area, and low‐cost organic electronics. In this paper, we describe devices based on spin‐coated organic polymer that reproducibly exhibit field‐effect mobility values around 5 × 10?3 cm2/V‐sec. We also address fabrication, performance, and stability issues that are critical for the use of such devices in active‐matrix flat‐panel displays.  相似文献   

6.
Abstract— A novel method for the fabrication of ink‐jet‐printed organic light‐emitting‐diode devices is discussed. Unlike previously reported solution‐processed OLED devices, the emissive layer of OLED devices reported here does not contain polymeric materials. The emission of the ink‐jet‐printed P2OLED (IJ‐P2OLED) device is demonstrated for the first time. It shows good color and uniform emission although it uses small‐molecule solution. Ink‐jet‐printed green P2OLED devices possess a high luminous efficiency of 22 cd/A at 2000 cd/m2 and is based on phosphorescent emission. The latest solution‐processed phosphorescent OLED performance by spin‐coating is disclosed. The red P2OLED exhibits a projected LT50 of >53,000 hours with a luminous efficiency of 9 cd/A at 500 cd/m2. The green P2OLED shows a projected LT50 of >52,000 hours with a luminous efficiency of 35 cd/A at 1000 cd/m2. Also discussed is a newly developed sky‐blue P2OLED with a projected LT50 of >3000 hour and a luminous efficiency of 18 cd/A at 500 cd/m2.  相似文献   

7.
Abstract— Ink‐jet printing was used to prepare a single‐substrate multicolor cholesteric liquid‐crystal (Ch‐LC) display incorporating three Ch‐LCs exhibiting different reflective wavelengths. A room‐temperature low‐vacuum chemical‐vapor‐deposition process was developed for coating a thin polymer film onto the Ch‐LC so that the top electrode could be coated onto the Ch‐LC layer. Herein, the successful operation of such a 10.4‐in. QVGA Ch‐LC display at 40 V will be described.  相似文献   

8.
Abstract— We present a process for active‐matrix flat‐panel‐display manufacture based on solution processing and printing of polymer thin‐film transistors. In this process, transistors are fabricated using soluble semiconducting, conducting, and dielectric polymer materials. Accurate definition of the transistor channel and other circuit components are achieved by direct ink‐jet printing combined with surface‐energy patterning. We have used this process to create 4800‐pixel 50‐dpi active‐matrix backplanes. These backplanes were combined with polymer‐dispersed liquid crystal to create the first ink‐jet‐printed active‐matrix displays. Our process is, in principle, environmentally friendly, low temperature, compatible with flexible substrates, cost effective, and advantageous for short‐run length and large display sizes. As well as polymer‐dispersed liquid crystal, this technology is applicable to conventional liquid‐crystal and electrophoretic display effects.  相似文献   

9.
Large quantities of microscopic red, green, and blue light‐emitting diodes (LEDs) made of crystalline inorganic semiconductor materials micro‐transfer printed in large quantities onto rigid or flexible substrates form monochrome and color displays having a wide range of sizes and interesting properties. Transfer‐printed micro‐LED displays promise excellent environmental robustness, brightness, spatial resolution, and efficiency. Passive‐matrix and active‐matrix inorganic LED displays were constructed, operated, and their attributes measured. Tests demonstrate that inorganic micro‐LED displays have outstanding color, viewing angle, and transparency. Yield improvement techniques include redundancy, physical repair, and electronic correction. Micro‐transfer printing enables revolutionary manufacturing strategies in which microscale LEDs are first assembled into miniaturized micro‐system “light engines,” and then micro‐transfer printed and interconnected directly to metallized large‐format panels. This paper reviews micro‐transfer printing technology for micro‐LED displays.  相似文献   

10.
Abstract— Roll‐to‐roll methods and equipment to manufacture a bistable, passively driven display media on a flexible substrate have been developed. Using continuous coating techniques and equipment, cholesteric liquid‐crystal droplets in a gelatin binder and a dark layer are simultaneously coated onto laser‐etched‐patterned transparent ITO conductors on a polymeric web. Second conductors are printed with a UV‐curable polymer thick‐film ink over the active display layers, followed by slitting and chopping to complete the manufacture of display media in a full roll‐to‐roll mode. Segmented‐ and matrix‐display media can be generated using these techniques. This paper will focus on the manufacturing considerations for producing matrix‐display media.  相似文献   

11.
We present an adaptive slicing scheme for reducing the manufacturing time for 3D printing systems. Based on a new saliency‐based metric, our method optimizes the thicknesses of slicing layers to save printing time and preserve the visual quality of the printing results. We formulate the problem as a constrained ?0 optimization and compute the slicing result via a two‐step optimization scheme. To further reduce printing time, we develop a saliency‐based segmentation scheme to partition an object into subparts and then optimize the slicing of each subpart separately. We validate our method with a large set of 3D shapes ranging from CAD models to scanned objects. Results show that our method saves printing time by 30–40% and generates 3D objects that are visually similar to the ones printed with the finest resolution possible.  相似文献   

12.
Abstract— A flexible phosphorescent color active‐matrix organic light‐emitting‐diode (AMOLED) display on a plastic substrate has been fabricated. Phosphorescent polymer materials are used for the emitting layer, which is patterned using ink‐jet printing. A mixed solvent system with a high‐viscosity solvent is used for ink formulation to obtain jetting reliability. The effects of evaporation and the baking condition on the film profile and OLED performances were investigated. An organic thin‐film‐transistor (OTFT) backplane, fabricated using pentacene, is used to drive the OLEDs. The OTFT exhibited a current on/off ratio of 106 and a mobility of 0.1 cm2/V‐sec. Color moving images were successfully shown on the fabricated display.  相似文献   

13.
Abstract— Color filters spin‐coated on plastic and glass substrates have been cured by electron‐beam radiation instead of by the conventional thermal‐heating method. The electron‐beam curing of the color filters has many advantages over the thermal curing method. Electron‐beam curing is, in principle, a non‐thermal method where low‐temperature (<100°C) curing of color filters on plastic substrates can be realized for the manufacturing process of flexible display panels. A color‐filter resist having a 1.5‐μm thickness was spin‐coated on plastic (polycarbonate) and glass (corning 1737) substrates. The effect of the electron‐beam radiation conditions, such as electron‐beam energy (0.3–1.0 keV), radiation dosage (10–200 kGy), and ambient oxygen has been characterized. The degree of curing was analyzed by using the characteristic absorption peaks at 808 and 1405 cm?1 in the FT‐IR spectrum. These two peaks originate from the carbon double bonds (>C=C<) of the multi‐functional acrylate monomer which exist in the color‐filter resist. By electron‐beam radiation, the spin‐coated color filter can be effectively polymerized at g (glass transition temperature) of the plastic substrates. The electron beam can solve the problems of the conventional thermal curing method, such as thermal deformation of a plastic substrate and difficulty in achieving dimensional control of a color‐filter pattern due to a large coefficient of thermal expansion (20–70 ppm/°C) compared to that of a glass substrate.  相似文献   

14.
Abstract— Currently, most research into organic light‐emitting diodes (OLEDs) has focused on two main classes of materials: small organic molecules and conjugated polymers. An alternative approach is to use conjugated dendrimers. We show that conjugated dendrimers are a promising new class of solution‐processible materials for use as the active layer in highly efficient organic LEDs. By optimizing the choice of device structure, host material, and electron transport layer, we can obtain efficiencies of 55 cd/A and power efficiencies of 40 lm/W. This is an excellent result for a spin‐coated emissive layer.  相似文献   

15.
Abstract— Light‐emitting transistors having a metal‐base organic transistor (MBOT) structure demonstrate both the function of an organic thin‐film transistor (OTFT) and organic light‐emitting diode (OLED). The MBOT is a vertical‐type organic transistor having a simple structure composed of organic/metal/organic layers demonstrating high‐current and low‐voltage operation. The light‐emitting MBOT was fabricated simply by inserting additional layers of hole‐transporting and emissive materials used in the OLED into the col lector layer. The device showed perfect surface emission similar to an OLED. A luminance modulation of 370 cd/m2 was observed at a collector voltage of 20 V and a base voltage of 3 V. This device can be applied to an OLED display device to increase the numerical aperture or reduce the required current of the TFT backplane.  相似文献   

16.
Abstract— A 5‐in. QVGA flexible AMOLED display driven by OTFTs has been fabricated at a low temperature of 130°C. A polyethylene naphthalate film was used as the flexible substrate and an olefin polymer was used as the gate insulator for the OTFT. This layer was formed by spin‐coating and baking at 130°C. Pentacene was used as the organic semiconductor layer. The OTFT performance to drive the flexible display with QVGA pixels in terms of current on/off ratio, carrier mobility, and spatial uniformity on the backplane have been obtained. Phosphorescent and fluorescent OLEDs were used as light‐emitting devices on a flexible display. Those layers were formed by vacuum deposition. After the flexible display was fabricated, a clear and uniform moving image was obtained on the display. The display also showed a stable moving image even when it was bent.  相似文献   

17.
Abstract— We demonstrated an A4‐paper‐sized flexible ferroelectric liquid‐crystal (FLC) color displays fabricated by using a new plastic‐substrate‐based process which was developed for large‐sized devices. Finely patterned color filters and ITO electrodes were formed on a plastic substrate by a transfer method to avoid surface roughness and thermal distortion of the substrate, which induce disordering of the FLC molecular alignment. The thickness of an FLC/monomer solution sandwiched by two plastic‐film substrates was well controlled over a large area by using flexographic printing and lamination techniques. Molecular‐aligned polymer walls and fibers were formed in the FLC by a two‐step photopolymerization‐induced phase‐separation method using UV‐light irradiation. A fabricated A4‐sized flexible‐sheet display for color‐segment driving was able to exhibit color images even when it was bent.  相似文献   

18.
It is well known that high transmission loss occurs when millimeter waves traveling through the atmosphere. As an alternative, power line is proposed as a transmission media to combat the high loss. In this article, a three‐dimensional (3D) printed high‐gain circularly polarized antenna was proposed for millimeter‐wave broadband power line communications. It has a simple structure, where tapered slots are designed between the upper and lower layers of the waveguide to generate the circularly polarized operation. A wide impedance bandwidth of 31.58% (24‐33 GHz) and an axial ratio bandwidth of 28.07% (24.5‐32.5 GHz) are achieved by the proposed design. A maximum gain of 11.2 dBi is measured from the 3D printed structure. The proposed antenna has a simple structure which is easy to adjust to any working frequency. The antenna can be excited by properly integrated to the waveguide that connected to the power line end. The use of 3D printing technology enables a low‐cost solution millimeter‐wave broadband communications over the power line.  相似文献   

19.
An indium oxide‐based precursor solution has been developed by spin coating method. In order to apply this material to mass production, material, process, and equipment optimizations for slot die coating have been implemented. Slot die coating is a cost‐effective and scalable process and already applied to photoresist materials in the display industry. The indium oxide‐based precursor solution has been coated on bare glasses and thin‐film transistor substrates by a mass production‐type slot die coater. Mobility of over 10 cm2/Vs is achieved for the first time for a large area at an annealing temperature of 350 °C. The homogeneity of the film will be presented.  相似文献   

20.
An 8‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display driven by oxide thin‐film transistors (TFTs) has been developed. In‐Ga‐Zn‐O (IGZO)‐TFTs used as driving devices were fabricated directly on a plastic film at a low temperature below 200 °C. To form a SiOx layer for use as the gate insulator of the TFTs, direct current pulse sputtering was used for the deposition at a low temperature. The fabricated TFT shows a good transfer characteristic and enough carrier mobility to drive OLED displays with Video Graphic Array pixels. A solution‐processable photo‐sensitive polymer was also used as a passivation layer of the TFTs. Furthermore, a high‐performance phosphorescent OLED was developed as a red‐light‐emitting device. Both lower power consumption and longer lifetime were achieved in the OLED, which used an efficient energy transfer from the host material to the guest material in the emission layer. By assembling these technologies, a flexible AMOLED display was fabricated on the plastic film. We obtained a clear and uniform moving color image on the display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号