首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Multi‐view spatial‐multiplexed autostereoscopic 3‐D displays normally use a 2‐D image source and divide the pixels to generate perspective images. Due to the reduction in the resolution of each perspective image for a large view number, a super‐high‐resolution 2‐D image source is required to achieve 3‐D image quality close to the standard of natural vision. This paper proposes an approach by tiling multiple projection images with a low magnification ratio from a microdisplay to resolve the resolution issue. Placing a lenticular array in front of the tiled projection image can lead to an autostereoscopic display. Image distortion and cross‐talk issues resulting from the projection lens and pixel structure of the microdisplay have been addressed with proper selection of the active pixel and adequate pixel grouping and masking. Optical simulation has shown that a 37‐in. 12‐view autostereoscopic display with a full‐HD (1920 × 1080) resolution can be achieved with the proposed 3‐D architecture.  相似文献   

2.
Abstract— A new approach to resolution enhancement of an integral‐imaging (II) three‐dimensional display using multi‐directional elemental images is proposed. The proposed method uses a special lens made up of nine pieces of a single Fresnel lens which are collected from different parts of the same lens. This composite lens is placed in front of the lens array such that it generates nine sets of directional elemental images to the lens array. These elemental images are overlapped on the lens array and produce nine point light sources per each elemental lens at different positions in the focal plane of the lens array. Nine sets of elemental images are projected by a high‐speed digital micromirror device and are tilted by a two‐dimensional scanning mirror system, maintaining the time‐multiplexing sequence for nine pieces of the composite lens. In this method, the concentration of the point light sources in the focal plane of the lens array is nine‐times higher, i.e., the distance between two adjacent point light sources is three times smaller than that for a conventional II display; hence, the resolution of three‐dimensional image is enhanced.  相似文献   

3.
Abstract— A method to increase the viewing resolution of an autostereoscopic display without increasing the density of microlenses is proposed. Multiple projectors are used for the projection images to be focused and overlaid on a common plane in the air behind the microlens array. The multiple overlaid projection images yield multiple light spots inside the region of each elemental lenslet of the microlens array. This feature provides scalable high‐resolution images by increasing the number of projectors. Based on the proposed method, a prototype display that includes 15 projectors was designed and built. 3‐D images were successfully reproduced on the prototype display with full parallax and a wide viewing angle of 70°.  相似文献   

4.
Abstract— This study develops an autostereoscopic display based on a multiple miniature projector array to provide a scalable solution for a high‐resolution 3‐D display with large viewing freedom. To minimize distortion and dispersion, and to maximize the modulation transfer function (MTF) of the projection image to optimize 3‐D image quality, a dedicated projection lens and an accurate six‐axis adjusting platform for the miniature projector were designed and fabricated. Image‐blending technology based on a lookup table was adopted to combine images from 30 miniature projectors into a seamless single image. The result was a 35‐in. autostereoscopic display with 60 views ata 30° viewing angle, 90° FOV, and large range of viewing distance. The proposed system exhibits very smooth motion parallax when viewers move around in front of it.  相似文献   

5.
Abstract— A high‐resolution autostereoscopic 3‐D projection display with a polarization‐control space dividing the iris‐plane liquid‐crystal shutter is proposed. The polarization‐control iris‐plane shutter can control the direction of stereo images without reducing the image quality of the microdis‐play. This autostereoscopic 3‐D projection display is 2‐D/3‐D switchable and has a high resolution and high luminance. In addition, it has no cross‐talk between the left and right viewing zones, a simple structure, and the capability to show multi‐view images.  相似文献   

6.
Abstract— An integral floating display (IFD) with a long depth range without floating lens distortion is proposed. Two lenses were used to reduce barrel distortion of the floating lens and three‐dimensional (3‐D) image deformation from object‐dependent longitudinal and lateral magnifications in the floating‐display system, combined with an integral imaging display. The distance between the floating lenses is the sum of their focal lengths. In the proposed configuration, lateral and longitudinal magnifications are constant regardless of the distance of the integrated 3‐D images, so the distortions from the distant‐dependent magnifications of the floating lens do not occur with the proposed method. In addition, the proposed floating system expands the depth range of the integral imaging display. As a result, the display can show a correct 3‐D floating image with a large depth range. Experimental results demonstrate that the proposed method successfully displays a 3‐D image without floating lens distortions across a large depth range.  相似文献   

7.
This paper proposes a method for combining multiple integral three‐dimensional (3D) images using direct‐view displays to obtain high‐quality results. A multi‐image combining optical system (MICOS) is used to enlarge and combine multiple integral 3D images without gaps. An optical design with a simple lens configuration that does not require a diffuser plate prevents the deterioration in resolution resulting from lens arrangement errors and the diffuser plate. An experiment was performed to compare a previously developed method with the proposed method, and the latter showed a significant improvement in image quality. A method for expanding the effective viewing angle of the proposed optical design was also developed, and its effectiveness was confirmed experimentally. A prototype device of the proposed optical design was constructed using a high‐density organic light‐emitting diode (OLED) panel with 8K resolution and 1058 ppi pixel density to achieve 311 (H) × 175 (V) elemental images, a viewing angle of 20.6° in both the horizontal and vertical directions, and a display size of 9.1 in. In addition, the proposed optical design enabled making device considerably thinner, ie, with a thickness of only 47 mm.  相似文献   

8.
Abstract— Stereoscopic and autostereoscopic projection‐display systems use projector arrays to present stereoscopic images, and each projector casts one parallax image of a stereoscopic scene. Because of the position shift of the projectors, the parallax images have geometric deformation, which influences the quality of the displayed stereoscopic images. In order to solve this problem, a method based on homography is proposed. The parallax images are pre‐transformed before they are projected, and then the stereoscopic images without geometric distortion can be obtained. An autostereoscopic projection‐display system is developed to present the images with and without calibration. Experimental results show that this method works effectively.  相似文献   

9.
Abstract— This paper describes the construction and operation of four 3‐D displays in which each display produces two images for each eye and thus fits into the category of projection‐based binocular stereoscopic displays. The four 3‐D displays described are pico‐projector‐based, liquid‐ crystal—on—silicon (LCOS) conventional projector‐based, 120‐Hz digital‐light‐processor (DLP) projector‐ based, and the HELIUM3D system. In the first three displays, images are produced on a direct‐view LCD whose conventional backlight is replaced with a projection illumination source that is controlled by a multi‐user head tracker; novel steering optics direct the projector output to regions referred to as exit pupils located at the viewers' eyes. In the HELIUM3D display, the image information is supplied by a horizontally scanned, fast, light valve whose output is controlled by a spatial light modulator (SLM) to direct images to the appropriate viewers' eyes. The current statu s and the multimodal potential of the HELIUM3D display are described.  相似文献   

10.
This paper describes a practical method that enables actual images to be converted so that they can be projected onto an immersive projection display (IPD) screen. IPD screens are particularly unique in that their angle of view is extremely wide; therefore, the images projected onto them need to be taken on a special format. In practice, however, it is generally very difficult to shoot images that completely satisfy the specifications of the targeting IPD environment due to cost, technical problems or other reasons. To overcome these problems, we developed a method to modify the images by abandoning geometrical consistency. We were able to utilize this method by assuming that the given image was shot according to a special projection model. Because this model differed from the actual projection model with which the image was taken, we termed it the pseudo‐projection model. Since our method uses simple geometry, and can easily be expressed by a parametric function, the degree of modification or the time sequence for modification can readily be adjusted according to the features of each type of content. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Geometric calibration to projection images is an indispensable operation for projection‐based spatial display. In this paper, we propose a new method for correcting images generated in a computer onto a cylindrical surface accurately, which can project a high‐resolution projection image with pixels matching avoiding too much manual operation. Images waiting to be projected are pre‐warped according to the rough correspondence between projectors and physical surface. To solve the errors resulting from unexpected pixel shifts in overlap projection area, we fit the Bézier interpolation to the images and apply the optimization theory with added constraints to correct the projection image accurately. This optimization process, by taking the pixels with specific significance on the images as the basis of calculation, avoids the traditional ways of translating the control points of the Bézier surface directly. The final results achieve a completely accurate projection picture even if the projection surface shape is inaccurate and irregular. We present the details of the proposed accurate calibration algorithm and illustrate our method, which, with its scalability, can achieve perfect projection efficiently and accurately with experiments.  相似文献   

12.
Abstract— A 40‐in. tiled projection integral imaging system has been implemented, adopting a polarization‐multiplexing technique. The system is composed of two full‐high‐definition (HD) projectors, a time‐varying polarizer, a polarization preserving screen, polarization films, a lens array, and a control unit. An elemental image set is projected using two full‐HD projectors to enhance the resolution of the system. The viewing region of the system is increased by using a polarization switching method. The polarization state of the elemental image set is changed by the time‐varying polarizer, and the elemental image set is diffused by the polarization preserving screen. The elemental image set with a preserved polarization state forms a three‐dimensional image with increased viewing angle by the integration of a lens array with polarization films. A 60‐in. tiled projection integral imaging system was also demonstrated using four full‐HD projectors.  相似文献   

13.
Abstract— Although there are numerous types of floating‐image display systems which can project three‐dimensional (3‐D) images into real space through a convex lens or a concave mirror, most of them provide only one image plane in space to the observer; therefore, they lack an in‐depth feeling. In order to enhance a real 3‐D feeling of floating images, a multi‐plane floating display is required. In this paper, a novel two‐plane electro‐floating display system using 3‐D integral images is proposed. One plane for the object image is provided by an electro‐floating display system, and the other plane for the background image is provided with the 3‐D integral imaging system. Consequently, the proposed two‐plane electro‐floating display system, having a 3‐D background, can provide floated images in front of background integral images resulting in a different perspective to the observer. To show the usefulness of the proposed system, experiments were carried out and their results are presented. In addition, the prototype was practically implemented and successfully tested.  相似文献   

14.
Abstract— A 360°‐viewable cylindrical three‐dimensional (3‐D) display system based on integral imaging has been implemented. The proposed system is composed of a cylindrically arranged electroluminescent (EL) pinhole film, an EL film backlight, a barrier structure, and a transmission‐type flexible display panel. The cylindrically arranged point‐light‐source array, which is generated by the EL pinhole film reconstructs 360°‐viewable virtual 3‐D images at the center of the cylinder. In addition, the proposed system provides 3‐D/2‐D convertibility using the switching of EL pinhole film from a point light source to a surface light source. In this paper, the principle of operation, analysis of the viewing parameters, and the experimental results are presented.  相似文献   

15.
Abstract— We have developed a 470 × 235‐ppi poly‐Si TFT‐LCD with a novel pixel arrangement, called HDDP (horizontally double‐density pixels), for high‐resolution 2‐D and 3‐D autostereoscopic displays. 3‐D image quality is especially high in a lenticular‐lens‐equipped 3‐D mode because both the horizontal and vertical resolutions are high, and because these resolutions are equal. 3‐D and 2‐D images can be displayed simultaneously in the same picture. In addition, 3‐D images can be displayed anywhere and 2‐D characters can be made to appear at different depths with perfect legibility. No switching of 2‐D/3‐D modes is necessary, and the design's thin and uncomplicated structure makes it especially suitable for mobile terminals.  相似文献   

16.
Abstract— The jerkiness of moving three‐dimensional (3‐D) images produced by a high‐density directional display was studied. Under static viewing conditions in which subjects' heads did not move, jerkiness was more noticeable when moving 3‐D images were displayed in front of the display screen and was less noticeable when moving 3‐D images were displayed behind the screen. We found that the perception of jerkiness depended on the visual angular velocities of moving 3‐D images. Under dynamic viewing conditions in which subjects' heads were forced to move, when moving 3‐D images were displayed in front of the screen, jerkiness was less noticeable when the subjects' heads and 3‐D images moved in opposite directions and was more noticeable when they moved in the same direction. When moving 3‐D images were displayed behind the screen, jerkiness was less noticeable when subjects' heads and 3‐D images moved in the same direction and was more noticeable when they moved in opposite directions.  相似文献   

17.
In this paper, we describe a single‐user glasses‐free (autostereoscopic) 3D display where images from a pair of picoprojectors are projected on to a retroreflecting screen. Real images of the projector lenses formed at the viewer's eyes produce exit pupils that follow the eye positions by the projectors moving laterally under the control of a head tracker. This provides the viewer with a comfortable degree of head movement. The retroreflecting screen, display hardware, infrared head tracker, and means of stabilizing the image position on the screen are explained. The performance of the display in terms of crosstalk, resolution, image distortion, and other parameters is described. Finally, applications of this display type are suggested.  相似文献   

18.
Abstract— A new type of diffractive spatial optical modulators (SOMs) has been developed for projection‐display and other applications such as holographic data storage, programmable lithography, and optical communications. It exhibits the inherent advantages of fast response time and high‐performance light modulation, suitable for high‐quality and high‐resolution projection displays. The ±1st‐order efficiency and contrast ratio of 39% and 1000:1 was achieved for a prototype SOM. The response time can be as fast as 0.7μsec with a 400‐nm displacement, enough to make a full‐HD display, being driven by 10‐V. A laser display in full‐HD format (1920 × 1080) was successfully demonstrated by using prototype projection engines having SOM devices, signal‐processing circuits, and projection optics.  相似文献   

19.
We propose an integral imaging (II) three‐dimensional (3D) display using a tilted barrier array and a stagger microlens array. The tilted barrier array consists of two orthogonally polarized sheets. In the stagger microlens array, the center of the microlens has p/2 shift with the elemental image along the horizontal direction, where p is the pitch of the microlens. The proposed II 3D display produces two different viewing zones and each of them is almost equal to that of the conventional II 3D display, and it has no crosstalk. We verify the feasibility of the proposed II 3D display in the simulation results.  相似文献   

20.
Abstract— The viewing angle and flipping areas of a conventional integral‐imaging three‐dimensional (3‐D) display were analyzed. The pitches of the elemental image and micro‐lens are identical. The more micro‐lenses used, the smaller the viewing angle becomes and the wider the flipping areas become. In this paper, an improved integral‐imaging 3‐D display is presented. The pitch of the elemental image is larger than that of the micro‐lens. The single‐viewing angles of all micro‐lenses converge and there are no flipping areas at the optimal viewing distance. Computational reconstructions of improved and conventional integral imaging were carried out, and experimental results demonstrate that improved integral‐imaging 3‐D displays have a wider viewing angle than the conventional ones and do not have flipping areas at the optimal viewing distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号