首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct numerical simulations (DNSs), for a stratified flow in HCCI engine-like conditions, are performed to investigate the effects of exhaust gas recirculation (EGR) by NOx and temperature/mixture stratification on autoignition of dimethyl ether (DME) in the negative temperature coefficient (NTC) region. Detailed chemistry for a DME/air mixture with NOx addition is employed and solved by a hybrid multi-time scale (HMTS) algorithm. Three ignition stages are observed. The results show that adding (1000 ppm) NO enhances both low and intermediate temperature ignition delay times by the rapid OH radical pool formation (one to two orders of magnitude higher OH radicals concentrations are observed). In addition, NO from EGR was found to change the heat release rates differently at each ignition stage, where it mainly increases the low temperature ignition heat release rate with minimal effect on the ignition heat release rates at the second and third ignition stages. Sensitivity analysis is performed and the important reactions pathways for low temperature chemistry and ignition enhancement by NO addition are specified. The DNSs for stratified turbulent ignition show that the scales introduced by the mixture and thermal stratifications have a stronger effect on the second and third stage ignitions. Compared to homogenous ignition, stratified ignition shows a similar first autoignition delay time, but about 19% reduction in the second and third ignition delay times. Stratification, however, results in a lower averaged LTC ignition heat release rate and a higher averaged hot ignition heat release rate compared to homogenous ignition. The results also show that molecular transport plays an important role in stratified low temperature ignition, and that the scalar mixing time scale is strongly affected by local ignition. Two ignition-kernel propagation modes are observed: a wave-like, low-speed, deflagrative mode (the D-mode) and a spontaneous, high-speed, kinetically driven ignition mode (the S-mode). Three criteria are introduced to distinguish the two modes by different characteristic time scales and Damkhöler (Da) number using a progress variable conditioned by a proper ignition kernel indicator (IKI). The results show that the spontaneous ignition S-mode is characterized by low scalar dissipation rate, high displacement speed flame front, and high mixing Damkhöler number, while the D-mode is characterized by high scalar dissipation rate, low displacement speeds in the order of the laminar flame speed and a lower than unity Da number. The proposed criteria are applied at the different ignition stages.  相似文献   

2.
There is worldwide interest in using renewable fuels within the existing infrastructure. Hydrogen and syngas have shown significant potential as renewable fuels, which can be produced from a variety of biomass sources, and used in various transportation and power generation systems, especially as blends with hydrocarbon fuels. In the present study, a reduced mechanism containing 38 species and 74 reactions is developed to examine the ignition behavior of iso-octane/H2 and iso-octane/syngas blends at engine relevant conditions. The mechanism is extensively validated using the shock tube and RCM ignition data, as well as three detailed mechanisms, for iso-octane/air, H2/air and syngas/air mixtures. Simulations are performed to characterize the effects of H2 and syngas on the ignition of iso-octane/air mixtures using the closed homogenous reactor model in CHEMKIN software. The effect of H2 (or syngas) is found to be small for blends containing less than 50% H2 (or syngas) by volume. However, for H2 mole fractions above 50%, it increases and decreases the ignition delay at low (T < 900 K) and high temperatures (T > 1000 K), respectively. For H2 fractions above 80%, the ignition is influenced more strongly by H2 chemistry rather than by i-C8H18 chemistry, and does not exhibit the NTC behavior. Nevertheless, the addition of a relatively small amount of i-C8H18 (a low cetane number fuel) can significantly enhance the ignitability of H2-air mixtures at NTC temperatures, which are relevant for HCCI and PCCI dual fuel engines. The CO addition seems to have a negligible effect on the ignition of i-C8H18/H2/air mixtures, indicating that the ignition of i-C8H18/syngas blends is essentially determined by i-C8H18 and H2 oxidation chemistries. The sensitivity and reaction path analysis indicates that i-C8H18 oxidation is initiated with the production of alkyl radical by H abstraction through reaction: i-C8H18 + O2 = C8H17 + HO2. Subsequently, the ignition chemistry in the NTC region is characterized by a competition between two paths represented by reactions R2 (C8H17 + O2 = C8H17O2) and R8 (C8H17 + O2 = C8H16 + HO2), with the R8 path dominating, and increasing the ignition delay. As the amount of H2 in the blend becomes significant, it opens up another path for the consumption of OH through reaction R36 (H2 + OH = H2O + H), which slows down the ignition process. However, for T > 1100 K, the presence of H2 decreases ignition delay primarily due to reactions R31 (O2 + H = OH + O) and R35 (H2O2 + M = OH + OH + M).  相似文献   

3.
A deep understanding of the ignition characteristics of syngas in O2/CO2 and O2/H2O atmospheres is essential for the application of oxy-syngas combustion. In the present work, ignition properties of a syngas with a typical H2-to-CO ratio (1:2) in O2/N2, O2/CO2 and O2/H2O atmospheres were investigated numerically. The ignition temperatures were determined by a 1-D model of a micro flow reactor with a controlled wall temperature profile, demonstrating that CO2 and H2O can lead to an increase in the ignition temperature compared to N2, and the increase is more pronounced for the O2/H2O atmosphere. The analysis manifests that CO2 and H2O can suppress OH production at the region with relatively lower wall temperature by promoting R10: H + O2(+M) = HO2+(M) to compete with R11: H + HO2 = 2OH for H radical. Moreover, the direct reaction effect (directly take part in reactions as reactants) and third-body effect of CO2 and H2O on ignition temperature were numerically isolated by adopting artificial species. The computation results reveal that the increase in ignition temperature mainly results from the enhanced reaction rate of R10 by the third-body effects of CO2 and H2O.  相似文献   

4.
In this study, the explosive behavior of syngas/air mixtures was investigated numerically in a 3-D cylindrical geometric model, using ANSYS Fluent. A chamber with the same dimensions as the geometry in the simulation was used to investigate the explosion process experimentally. The outcome was in good agreement with experimental results for most equivalence ratios at atmospheric pressure, while discrepancies were observed for very rich mixtures (? > 2.0) and at elevated pressure conditions. Both the experimental and simulated results showed that for syngas/air mixture, the maximum explosion pressure increased from lean (? = 0.8) to an equivalence ratio of 1.2, then decreased significantly with richer mixtures, indicating that maximum explosion pressure occurred at the equivalence ratio of 1.2, while explosion time was shortest at an equivalence ratio of 1.6. Increasing H2 content in the fuel blends significantly raised laminar burning velocity and shortened the explosion time, thereby increasing the maximum rate of pressure rise and deflagration index. Normalized peak pressure, the maximum rate of pressure rise and the deflagration index were sensitive to the initial pressure of the mixture, showing that they increased significantly with increased initial pressure.  相似文献   

5.
Dry reforming of methane (DRM) is a promising reaction, it could convert two greenhouse gases CO2 and CH4 into syngas (CO and H2) which could provide a mixed fuel for daily life or chemical feedstock for industrial application. Transition metals were widely applied in this process, however, single component of transition metal catalysts could not meet the stability, selectivity and activity demands simultaneously. And the coke formation on the catalysts is the major barrier to the commercialization of DRM. This review presents a systematic discussion and analysis of methane dry reforming to syngas in the catalytic process from both experimental study and density functional theory (DFT) calculation based on recent research. It includes catalytic performance test of activity, selectivity and stability in DRM on monometallic and bimetallic systems, and also gives the discussion of carbon formation in the former parts. The later parts focus on CH4 and CO2 activation over monometal and bimetal surface using DFT simulation. The rate determining step and reaction mechanisms involved in DRM are obtained based on thermodynamic analysis and microkinetic model. In the end, we give our outlook to the design and preparation of good performance catalysts as well as further theoretical simulation and analysis in DRM. This review could provide some useful information for going into methane dry reforming from both experimental application and atomic scale.  相似文献   

6.
Three-dimensional direct numerical simulation with detailed chemical kinetics of lean premixed CH4/air and H2/air flames at high Karlovitz numbers (Ka ∼ 1800) is carried out. It is found that the high intensity turbulence along with differential diffusion result in a much more rapid transport of H radicals from the reaction zone to the low temperature unburned mixtures (∼500 K) than that in laminar flamelets. The enhanced concentration of H radicals in the low temperature zone drastically increases the reaction rates of exothermic chain terminating reactions (e.g., H + O2+M = HO2 + M in lean H2/air flames), which results in a significantly enhanced heat release rate at low temperatures. This effect is observed in both CH4/air and H2/air flames and locally, the heat release rate in the low temperature zone can exceed the peak heat release rate of a laminar flamelet. The effects of chemical kinetics and transport properties on the H2/air flame are investigated, from which it is concluded that the enhanced heat release rate in the low temperature zone is a convection–diffusion-reaction phenomenon, and to obtain it, detailed chemistry is essential and detailed transport is important.  相似文献   

7.
The combustion characteristics of ammonia and ammonia-hydrogen fuel blends under spark-ignited turbulent premixed engine-relevant conditions were investigated by means of direct numerical simulation and detailed chemistry. Several test cases were investigated for an outwardly expanding turbulent premixed flame configuration covering pure ammonia and ammonia-hydrogen fuel blends with 10% and 15% hydrogen content by volume for different equivalence ratio values of 0.9, 1.0 and 1.1. The results showed that the fuel-lean flames exhibit strong wrinkled structures at flame front compared to stoichiometric and fuel-rich flames. The heat release rate plots indicate that adding hydrogen into ammonia improves the reactivity of the flame and enhances the combustion process. The scatter plots of heat release rate versus local curvature coloured by NO formation, show that high heat release rate values occur in the concave structures and low heat release rate values occur in the convex structure, which is consistent with NO distribution. The highest turbulent burning velocity values were found for the fuel-lean cases due to more wrinkled flame front with lower effective Lewis number compared to fuel-rich cases. The results show a bending effect for the ratio between turbulent to laminar burning velocities with respect to hydrogen addition at all equivalence ratios with 10% hydrogen addition into ammonia exhibiting a highest value for the burning velocity ratio. Two distinct flame structures (concave and convex) were analysed in terms of local equivalence ratio based on the elements of N and O as well as H and O. They revealed an opposite distribution of NO formation normal to the flame front within concave and convex structures. Elementary chemical reactions involved in NO formation have shown that hydrogen addition into ammonia influences the reactivity of certain specific chemical reactions.  相似文献   

8.
9.
HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.  相似文献   

10.
The explosion behavior of syngas/air mixtures under the effect of N2 and CO2 addition is experimentally investigated in three cases of N2 and CO2 volume fractions (0, 20% and 40%). Tests are performed for syngas/air mixtures with varying equivalent ratios (from 0.8 to 2.5) and hydrogen fractions (from 25% to 75%). The effects of N2 and CO2 addition on flame structure evolution, flame speed and overpressure histories are analyzed. The results showed that the tulip shaped flames appear in all cases regardless of whether N2 and CO2 are added. After flame inversion, the appearance of tulip shaped flame distortion can be observed in syngas/air without N2 and CO2 addition and meanwhile the oscillations are seen in the flame front position and speed trajectories. The flame distortion becomes less pronounced with N2 and CO2 addition, and the oscillation amplitude of the flame front position and speed reduce accordingly. Both addition of N2 or CO2 decrease the flame speed and the maximum overpressure. Therefore, it increases the time required for flame arriving to the discharge vent. Whereas CO2 has evidently better inhibition performance for syngas/air explosion.  相似文献   

11.
HCCI (Homogeneous Charge Compression Ignition) has been touted for many years as the alternate technology of choice for future engines, preserving the inherent efficiency of CIDI (Compression Ignition Direct Injection) engines while significantly reducing emissions. The current direction for all published diesel HCCI research is mixture preparation using the direct injection – system, referred to as internal mixture formation. The benefit of internal mixture formation is that it utilizes an already available direct injection system. Direct injected diesel HCCI can be divided into two areas, early injection (early in the compression stroke) and late injection (usually after Top Dead Center (aTDC)). Early direct injection HCCI requires carefully designed fuel injector to minimize the fuel wall-wetting that can cause combustion inefficiency and oil dilution. Late direct injection HCCI requires a long ignition delay and rapid mixing rate to achieve the homogeneous mixture. The ignition delay is extended by retarding the injection timing and rapid mixing rate was achieved by combining high swirl with toroidal combustion-bowl geometry. There is a compromise between Direct Injection (DI) and HCCI combustion regimes. Even under ideal conditions, it can prove difficult to form a truly homogeneous charge, which leads to elevated emissions when compared to true homogenous charge combustion and also strongly contribute to the high sensitivity of the combustion phasing to external parameters. The alternative to the internal mixture formation is, predictably, external mixture formation. By introducing the fuel external to the combustion chamber one can use the turbulence intake process to create a homogeneous charge regardless of engine conditions. This eliminates the need for combustion system changes which were necessary for the internal mixture formation method. With this method, the combustion system remains fully optimized for direct injection and also capable of running in HCCI combustion mode with nearly ideal mixture preparation. The key to the external mixture formation with diesel fuel is proper mixture preparation.  相似文献   

12.
压缩比、CO2和LPG对二甲醚燃料均质压燃燃烧的影响   总被引:6,自引:0,他引:6  
在一台2-135柴油机上实现了纯DME的均质压燃(HCCI)燃烧方式.实验结果表明,DME的HCCI燃烧模式不但可以实现无烟燃烧,还可以有效控制发动机Nox排放,使其接近于零排放.在实验负荷范围内,CO排放随负荷增加而降低;HC的排放随负荷增大而减少.对DME的HCCI燃烧机理进行研究表明,由于纯DME十六烷值高导致的着火比较早(上止点前28°CA左右),使得发动机只能在中低负荷较小范围内运行.为了扩展发动机工况,控制HCCI着火,进一步通过调节实验发动机压缩比,以及在优化的压缩比下,在进气道加入气体CO2或者在DME中加入LPG降低燃料十六烷值的方法来改进和控制HCCI的燃烧.实验表明以上方法可以有效控制HCCI燃烧,拓宽HCCI发动机运转范围.  相似文献   

13.
14.
An experimental investigation of the autoignition for various n-decane/oxidizer mixtures is conducted using a rapid compression machine, in the range of equivalence ratios of ?=0.5-2.2, dilution molar ratios of N2/(O2 + N2) = 0.79-0.95, compressed gas pressures of PC=7-30 bar, and compressed gas temperatures of TC=635-770 K. The current experiments span a temperature range not fully investigated in previous autoignition studies on n-decane. Two-stage ignition, characteristic of large hydrocarbons, is observed over the entire range of conditions investigated, as demonstrated in the plots of raw experimental pressure traces. In addition, experimental results reveal the sensitivity of the first-stage and total ignition delays to variations in fuel and oxygen mole fractions, pressure, and temperature. Predictability of two kinetic mechanisms is compared against the present data. Discrepancies are noted and discussed, which are of direct relevance for further improvement of kinetic models of n-decane at conditions of elevated pressures and low-to-intermediate temperatures.  相似文献   

15.
The NO mechanism under the moderate or intense low-oxygen dilution (MILD) combustion of syngas has not been systematically examined. This paper investigates the NO mechanism in the syngas MILD regime under the dilution of N2, CO2, and H2O through counterflow combustion simulation. The syngas reaction mechanism and the counterflow combustion simulation are comprehensively validated under different CO/H2 ratios and strain rates. The effects of oxygen volume fraction, CO/H2 ratio, pressure, strain rate, and dilution atmosphere are systematically investigated. For all the MILD cases, the contribution of the prompt and NO-reburning routes to the overall NO emission is less than 0.1% due to the lack of CH4 in fuel. At atmospheric pressure, the thermal route only accounts for less than 20% of the total NO emission because of the low reaction temperature. Moreover, at atmospheric pressure, the contribution of the NNH route to NO emission is always larger than 55% in the N2 atmosphere. The N2O-intermediate route is enhanced in CO2 and H2O atmospheres due to the increased third-body effects of CO2 and H2O through the reaction N2 + O (+M) ? N2O (+M). Especially in the H2O atmosphere, the N2O-intermediate route contributes to 60% NO at most. NO production is reduced with increasing CO/H2 ratio or pressure, mainly due to decreased NO formation from the NNH route. Importantly, a high reaction temperature and low NO emission are simultaneously achieved at high pressure. To minimize NO emission, the reactions should be operated at high values of CO/H2 ratios (i.e., >4) and pressures (e.g., P > 10 atm), low oxygen volume fractions (e.g., XO2 < 15%), and using H2O as a diluent. This study provides a new fundamental understanding of the NO mechanism of syngas MILD combustion in N2, CO2, and H2O atmospheres.  相似文献   

16.
The effects of fuel composition, thermal stratification, and turbulence on the ignition of lean homogeneous primary reference fuel (PRF)/air mixtures under the conditions of constant volume and elevated pressure are investigated by direct numerical simulations (DNSs) with a new 116-species reduced kinetic mechanism. Two-dimensional DNSs were performed in a fixed volume with a two-dimensional isotropic velocity spectrum and temperature fluctuations superimposed on the initial scalar fields with different fuel compositions to elucidate the influence of variations in the initial temperature fluctuation and turbulence intensity on the ignition of three different lean PRF/air mixtures. In general, it was found that the mean heat release rate increases slowly and the overall combustion occurs fast with increasing thermal stratification regardless of the fuel composition under elevated pressure and temperature conditions. In addition, the effect of the fuel composition on the ignition characteristics of PRF/air mixtures was found to vanish with increasing thermal stratification. Chemical explosive mode (CEM), displacement speed, and Damköhler number analyses revealed that the high degree of thermal stratification induces deflagration rather than spontaneous ignition at the reaction fronts, rendering the mean heat release rate more distributed over time subsequent to thermal runaway occurring at the highest temperature regions in the domain. These analyses also revealed that the vanishing of the fuel effect under the high degree of thermal stratification is caused by the nearly identical propagation characteristics of deflagrations of different PRF/air mixtures. It was also found that high intensity and short-timescale turbulence can effectively homogenize mixtures such that the overall ignition is apt to occur by spontaneous ignition. These results suggest that large thermal stratification leads to smooth operation of homogeneous charge compression-ignition (HCCI) engines regardless of the PRF composition.  相似文献   

17.
A three dimensional spatially developing hydrogen/air premixed flame in a micro combustor with a moderate Reynolds number and a high swirl number is studied using direct numerical simulation. The inflow mixture is composed of hydrogen and air at an equivalent ratio of 1.0 in the jet core region, and pure air elsewhere. The maximum axial velocity at the inlet is 100 m/s. A fourth-order explicit Runge–Kutta method for time integration and an eighth-order central differencing scheme for spatial discretization are used to solve the full Navier–Stokes (N–S) equation system. A 9 species 19-step reduced mechanism for hydrogen/air combustion is adopted. Vortex and turbulence characteristics are examined. Two instabilities, namely Kalvin–Helmholtz instability and centrifugal instability, are responsible for the transition from laminar flow to turbulence. A cone-like vortex breakdown is observed both in the isothermal swirling flow and in the swirling flame. One dimensional premixed laminar flame is studied, the structure of which is compared with that of the multi-dimensional one. Probability density functions of the curvature and tangential strain rate are presented. It is shown that the flame curvature has a near zero mean, and the flame aligns preferentially with extensive strain. Finally, the turbulent premixed flame regime diagram is used to characterize the flame. It is found that most of the flame elements lie in the laminar flame regime and the thin reaction zones regime.  相似文献   

18.
The study on the special phenomenon, occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety, developing protective technology against fire and decreasing the number of fire accidents. In this paper, the research on thermal ignition process of gasoline-air mixture in model underground oil depots tun- nel has been carried out by using experiment and numerical simulation methods. The calculation result has been demonstrated by the experiment data. The five stages of thermal ignition course, which are slow oxidation stage, rapid oxidation stage, fire stage, flameout stage and quench stage, have been firstly defined and accurately descried. According to the magnitude order of concentration, the species have been divided into six categories, which lay the foundation for explosion-proof design based on the role of different species. The influence of space scale on thermal ignition in small-scale space has been found, and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass, so that the progress of chemical reactions in the whole space are also changed. The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.  相似文献   

19.
In this work, partial oxidation of methane (POM) was investigated using Mg-Ni-Al (MNA) hydrotalcite promoted CeO2 catalyst in a fixed bed reactor. MNA hydrotalcite was synthesized using the co-precipitation process, while CeO2 was incorporated via the wetness impregnation technique. The CeO2@MNA samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) technique. The catalytic activity of CeO2 promoted MNA (CeO2@MNA) for POM reaction was evaluated for various CeO2 loading kept the feed ratio CH4/O2 = 2 at 850 °C. The catalyst containing 10 wt% cerium loading (10%CeO2@MNA) showed 94% CH4 conversion with H2/CO ratio above 2.0, that is more suitable for FT synthesis. The performance of catalyst is attributed to highly crystalline stable CeO2@MNA with better Ce-MNA interactions withstand for 35 h time on stream. Furthermore, the spent catalyst was examined by TGA, SEM-EDS, and XRD to evaluate the carbon formation and structural changes during the span of reaction time.  相似文献   

20.
Low-rank lignite is among the most abundant and cheap fossil fuels, linked, however, to serious environmental implications when employed as feedstock in conventional thermoelectric power plants. Hence, toward a low-carbon energy transition, the role of coal in world's energy mix should be reconsidered. In this regard, coal gasification for synthesis gas generation and consequently through its upgrade to a variety of value-added chemicals and fuels constitutes a promising alternative. Herein, we thoroughly explored for a first time the steam gasification reactivity of Greek Lignite (LG) and its derived chars obtained by raw LG thermal treatment at 300, 500 and 800 °C. Moreover, the impact of CO2 addition on H2O gasifying agent mixtures was also investigated. Both the pristine and char samples were fully characterized by various physicochemical techniques to gain insight into possible structure-gasification relationships. The highest syngas yield was obtained for chars derived after LG thermal treatment at 800 °C, due mainly to their high content in fixed carbon, improved textural properties and high alkali index. Steam gasification of lignite and char samples led to H2-rich syngas mixtures with a H2/CO ratio of approximately 3.8. However, upon co-feeding CO2 and H2O, the H2/CO ratio can be suitably adjusted for several potential downstream processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号