首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Performance and availability of molten carbonate fuel cells (MCFC) stack are greatly dependent on its operating temperature. Control of the operating temperature within a specified range and reduction of its temperature fluctuation are highly desirable. The models of MCFC stack existing are too complicated to be suitable for design of a controller because of its lack of clear input–output relations. In this paper, according to the demands of control design, a quantitative relations model of control‐oriented MCFC between the temperatures of the stack and flowrates of the input gases is developed, based on conservation laws. It is an affine nonlinear model with multi‐input and multi‐output, the flowrates of fuel and oxidant gases as the manipulated vector and the temperatures of MCFC electrode–electrolyte plates, separator plates as the controlled vector. The modelling and simulation procedures are given in detail. The simulation tests reveal that the model developed is accurate and it is suitable to be used as a model in designing a controller of MCFC stack. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Molten carbonate fuel cell (MCFC)/gas turbine (GT) hybrid system has attracted a great deal of research effort due to its higher electricity efficiency. However, its technology has remained at the conceptual level due to incomplete examination of the related issues, challenges and variables. To contribute to the development of system technology, the MCFC/GT hybrid system is analyzed and discussed herein. A qualitative comparison of the two kinds of MCFC/GT hybrid system, indirect and direct, is hindered by the many variables involved. However, the indirect system may be preferred for relatively small-scale systems with the micro-GT. The direct system can be more competitive in terms of system efficiency and GT selection due to the optionality of system layouts as well as even higher GT inlet temperature. System layout is an important factor influencing the system efficiency. The other issues such as GT selection, system pressurization and part-load operation are also significant.  相似文献   

3.
In the present article a molten carbonate fuel cell (MCFC) system has been developed, modeled and implemented in Matlab language. It enables definition of the optimal operating conditions of the fuel cell, in terms of electrical and thermal performance, when it is a part of a hybrid plant composed of an MCFC system, a gas turbine and a possible heat recovery system. The thermal energy, which is recoverable from the adequately treated anodic exhaust gases, is utilized in a gas turbine plant to reduce its fuel consumption. Therefore, in the present article a methodology is illustrated to calculate the optimal values of some parameters characterizing the MCFC/gas turbine integrated system in terms of the electrical, first law and equivalent efficiencies. A choice is made among the sets of values of parameters investigated to improve the performance of the same integrated system according to its use (for the production of electric energy only or for the contemporary production of electric and thermal energy). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply.Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction.However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions.The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.  相似文献   

5.
《Journal of power sources》2005,145(2):515-525
Several problems prevent molten carbonate fuel cells (MCFC) operation for an extended period. However, if the degradation factors can be identified and resolved in a timely manner, MCFC could become a valuable technology. Therefore, a performance diagnosis should be developed which enables the simple and instantaneous determination of MCFC degradation factors. A suitable six parameter equation obtained by a current-pulse method, obtainable from MCFC's transient response in 100 ms, is expressible in an equivalent circuit composed of three sub-circuits. The relationship between these parameters and each degradation factor is evaluated by a single MCFC cell, the electrode area of which is 16 cm2. Degradation factors include cross-leakage, electrolytic loss, cell temperature distribution and gas composition/flow rate. As a result, each of six parameters in the MCFC transient response corresponds to an ohmic potential drop, anode/cathode gas diffusion resistance, reactive resistance, three-phase interfacial resistance and electrolyte properties, respectively. The proposed performance diagnosis specifies the degradation factors by combining the six parameters. Performance diagnosis was applied to a single MCFC cell of an electrode area of 81 cm in extended operations, and the degradation factor diagnosed. As a result, the diagnosis was able to specify the cell degradation factors from the degradation factor ratio, corresponding to cell voltage, cell resistance and the N2 concentration of MCFC single cell performance. Therefore, the proposed performance diagnosis is able to easily specify the driven MCFC degradation factors in a timely manner.  相似文献   

6.
熔融碳酸盐燃料电池的电气特性研究   总被引:1,自引:0,他引:1  
为了研究熔融碳酸盐燃料电池的电气特性,分析了熔融碳酸盐燃料电池单元的电化学过程机理,建立了基于电化学反应的熔融碳酸盐燃料电池电气模型,推导了熔融碳酸盐燃料电池平均电流密度与燃气利用率的关系,给出了采用电化学方程的熔融碳酸盐燃料电池电气特性的模型结构和算法,并进行了仿真研究和试验.试验结果表明:该模型结构简单、准确度高,可获得千瓦级熔融碳酸盐燃料电池的电气特性曲线.  相似文献   

7.
Performance model of molten carbonate fuel cell   总被引:3,自引:0,他引:3  
A performance model of a molten carbonate fuel cell (MCFC), an electrochemical energy conversion device for electric power generation, is discussed. The presumptive ability of the MCFC model is improved and the impact of MCFC characteristics in fuel cell system simulations is investigated. Basic data are obtained experimentally by single-cell tests. A correlation formula based on the experimental data is derived for the cell voltage and the oxygen and carbon dioxide partial pressures. Three types of MCFC systems are compared. With regard to fuel utilization, system characteristics using the proposed correlation are very similar to those obtained using a previous model. However, the amount of decrease predicted by the proposed model with respect to system efficiency is larger than that obtained by the previous model at high air utilization  相似文献   

8.
Characteristics of molten carbonate fuel cell (MCFC) were critically compared to these of polymer electrolyte membrane fuel cell (PEMFC), alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC) and solid oxide fuel cell (SOFC). In comparison to the other fuel cells, the MCFC operates with the lowest current densities due to limited zones of effective electrode reactions and low solubilities of oxygen and hydrogen in molten carbonates; also it has a thickest electrodes–electrolyte assembly. In consequence, the applications of MCFC are almost limited to stationary power generators. Although the MCFC stationary power generators have now approached high technological level of precommercialization, in the future they may face a serious contest from SOFC and PEMFC, for which improvement of operational parameters is believed to be achieved easier.  相似文献   

9.
This paper reports a nonlinear fuzzy modeling study of a molten carbonate fuel cell (MCFC) stack by an identification method. MCFC is a complex nonlinear, multi-input and multi-output (MIMO) system that is hard to model by traditional methodologies. The Takagi–Sugeno (T–S) fuzzy model is suitable to model a large class of nonlinear MIMO system. In this paper, a MIMO T–S fuzzy model is used to represent MCFC. An identification method is used to determine both the nonlinear parameters of the antecedents and the linear parameters of the rules consequent in the T–S fuzzy model. The simulation tests reveal that obtained T–S fuzzy model using the identification method can efficiently approximate the static and dynamic behavior of a MCFC stack. Furthermore, based on this proposed T–S fuzzy model, valid control strategy studies such as predictive control, robust control can be developed.  相似文献   

10.
A novel combined molten carbonate fuel cell – steam turbine based system is proposed herein. In this cycle, steam is produced through the recovery of useful heat of an internal reforming MCFC and operates as work fluid in a Rankine cycle. Exergoeconomic analysis was performed, in order to verify the technical feasibility, including which components could be improved for greater efficiencies, as well as the cost of the power generated by the plant. A 10 MW MCFC was initially proposed, when the system reached 54.1% of thermal efficiency, 8.3% higher than MCFC alone, 11.9 MW of net power, 19% higher than MCFC alone, and an energy cost of 0.352 $/kWh. A sensitivity analysis was carried out and the parameters that most influenced on the cost were pointed out. The analysis pointed to the MCFC generation as the most impactful factor. By manipulating these values, it could be noted a significant power cost decrease, reaching satisfactory values to become economically feasible. The concept of economy of scale could be noticed in the proposed system, proving that a large-scale plant could be the focus of investment and public policies.  相似文献   

11.
Integrated gasifier‐molten carbonate fuel cell (IG‐MCFC) offers a clean and efficient route for power generation from coal. A molten carbonate fuel cell (MCFC) was assembled and its performance was tested with simulated coal gas. The output and the stability was found to be comparable to that with conventional feed gas. It was also observed that switching from one type of feed gas to another had only a marginal effect on the cell performance. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Two newly emerging technologies: (a) plasma gasification and (b) molten carbonate fuel cell (MCFC) are integrated for hydrogen and power production for various system configurations. Due to the emission concerns of fossil fuels, wastes such as refused derived fuel (RDF) is chosen as feedstock. The simulation of the power plants is performed using Aspen plus and consequently, 4-E (energy, exergy, economic and environmental) analyses are executed. The highest energy and exergy efficiencies attained are 54.12% and 52.02% for the system Syngas:CH4 [PSA: MCFC], respectively. Moreover, the cost of electricity considering all the configurations is ranged between 77.48 and 107.93 $/MWh while the LCOH is between 1.01 and 3.94 $/kg. Likewise, introduction of MCFC for 0:100 [PSA: MCFC] case reduced the annual CO2 emissions ∼5 times than of 100:0. Therefore, the 4-E analyses reported that integrated plasma gasification with MCFC introducing waste as feed could possibly favour H2 and power co-generation and a cleaner environment.  相似文献   

13.
The consistent problem of the CO2 emissions and the necessity to find new energy sources, are motivating the scientific research to use high efficiency electric energy production's technologies that could exploit renewable energy sources too. The molten carbonate fuel cell (MCFC) due to its high efficiencies and low emissions seems a valid alternative to the traditional plant. Moreover, the high operating temperature and pressure give the possibility to use a turbine at the bottom of the cells to produce further energy, increasing therefore the plant's efficiencies. The basic idea using this two kind of technologies (MCFC and microturbine), is to recover, via the microturbine, the necessary power for the compressor, that otherwise would remove a consistent part of the MCFC power generated. The purpose of this work is to develop the necessary models to analyze different plant configurations. In particular, it was studied a plant composed of a MCFC 500 kW Ansaldo at the top of a microturbine 100 kW Turbec. To study this plant it was necessary to develop: (i) MCFC mathematical model, that starting from the geometrical and thermofluidodynamic parameter of the cell, analyze the electrochemical reaction and shift reaction that take part in it; (ii) plate reformer model, a particular compact reformer that exploit the heat obtained by a catalytic combustion of the anode and part of cathode exhausts to reform methane and steam; and (iii) microturbine-compressor model that describe the efficiency and pressure ratio of the two machines as a function of the mass flow and rotational regime. The models developed was developed in Fortran language and interfaced in Chemcad© to analyze the power plant thermodynamic behavior. The results show a possible plant configuration with high electrical and global efficiency (over 50 and 74%).  相似文献   

14.
为有效回收熔融碳酸盐燃料电池产生的余热,提出一种由熔融碳酸盐燃料电池(MCFC)、两级并联温差发电器(TTEG)和回热器组合而成的混合系统模型.考虑MCFC电化学反应中的过电势损失和混合系统中的不可逆损失,通过数值分析得出混合系统的输出功率和效率的数学表达式,获得混合系统的一般性能特征,讨论MCFC电流密度与温差发电器...  相似文献   

15.
In order to realize biomass potential as a major source of energy in the power generation and transport sectors, there is a need for high efficient and clean energy conversion devices, especially in the low-medium range suiting the disperseness of this fuel. Large installations, based on boiler coupled to steam turbine (or IGCC), are too complex at smaller scale, where biomass gasifiers coupled to ICEs have low electrical efficiency (15-30%) and generally not negligible emissions.This paper analyses new plants configurations consisted of Fast Internal Circulated Fluidized-Bed Gasifier, hot-gas conditioning and cleaning, high temperature fuel cells (MCFC), micro gas turbines, water gas shift reactor and PSA to improve flexibility and electric efficiency at medium scale. The power plant feasibility was analyzed by means of a steady state simulation realized through the process simulator Chemcad in which a detailed 2D Fortran model has been integrated for the MCFC. A comparison of the new plant working with external (MCFC-ER) and internal (MCFC-IR) reforming MCFC was carried out. The small amount of methane in the syngas obtained by atmospheric pressure biomass gasification is not enough to exploit internal reforming cooling in the MCFC. This issue has been solved by the use of pre-reformer working as methanizer upstream the MCFC. The results of the simulations shown that, when MCFC-IR is used, the parameters of the cell are better managed. The result is a more efficient use of fuel even if some energy has to be consumed in the methanizer. In the MCFC-IR and MCFC-ER configurations, the calculated cell efficiency is, respectively, 0.53 and 0.42; the electric power produced is, respectively, 236 and 216 kWe, and the maximum temperature reached in the cell layer is, respectively, 670 °C and 700 °C. The MCFC-ER configuration uses a cathode flowrate for MCFC cooling that are 30% lower than MCFC-IR configuration. This reduces pressure drop in the MCFC, possible crossover effect and auxiliaries power consumption. The electrical efficiency for the MCFC-IR configuration reaches 38%.  相似文献   

16.
MCFC (molten carbonate fuel cell) is a relatively new kind of fuel cell that may be utilized in both local and large-scale energy distribution and generating systems. MCFCs are largely regarded as a viable source of renewable energy. Making an MCFC is a time-consuming and costly process. Mathematical modeling and efficiency simulations are essential to appropriately maximize its performance. Regenerative cycle, copper-chlorine cycle, and electric heater with PID controller is also studied to integrate them with MCFC to increase the efficiency of the overall system. Copper–Chlorine cycle is integrated to provide a stable stream of hydrogen and oxygen for the fuel cell. The Molten Carbonate fuel cell of stack 100 generates 1.203 MW of power at Voltage of 1.2 V each. Waste Heat recovery system is installed named regenerative Steam cycle which produces 2.94 MW of power. The total efficiency of system is 57% and the total extracted power is 4.143 MW. MATLAB/Simulink R2020a is used for modeling of multigeneration system with use of Engineering Equation Solver.  相似文献   

17.
This study proposes a molten carbonate fuel cell (MCFC)-based hybrid propulsion system for a liquefied hydrogen tanker. This system consists of a molten carbonate fuel cell and a bottoming cycle. Gas turbine and steam turbine systems are considered for recovering heat from fuel cell exhaust gases. The MCFC generates a considerable propulsion power, and the turbomachinery generates the remainder of the power. The hybrid systems are evaluated regarding system efficiency, economic feasibility, and exhaust emissions. The MCFC with a gas turbine has higher system efficiency than that with a steam turbine. The air compressor consumes substantial power and should be mechanically connected to the gas turbine. Although fuel cell-based systems are less economical than other propulsion systems, they may satisfy the environmental regulations. When the ship is at berth, the MCFC systems can be utilized as distributed generation that is connected to the onshore-power grid.  相似文献   

18.
Molten-salt fuel cells—Technical and economic challenges   总被引:1,自引:0,他引:1  
This paper presents a personal view of the status and research needs of the MCFC and other molten-salt fuel cells. After an overview of current MCFC performance, compared with performance and cost of other fuel cells, improvements in power density and lifetime as well as cost reduction are identified as key priorities to accelerate the commercialization of the MCFC. In spite of its unfavorable public image (compared to, in particular, PEMFC and planar SOFC) MCFC technology has progressed steadily and cost reduction has been significant. Large-scale commercialization, especially in the distributed generation and cogeneration market, remains a possibility but its chances are highly dependent on a forceful and consistent energy policy, for example taking into account the externalities associated with various modes of electric power production from fossil fuels. In spite of steady improvements in performance, important defects in fundamental knowledge remain about wetting properties, oxygen reduction kinetics, corrosion paths and control mechanisms. These must be addressed to stimulate further simplification of design and find solutions to lifetime issues. Recently, alternative concepts of molten-salt fuel cells have been capturing attention. The direct carbon fuel cell (DCFC), reviving an old concept, has caught the attention of energy system analysts and some important advances have been made in this technology. Direct CO and CH4 oxidation have also been a focus of study. Finally, the potential of nanotechnology for high-temperature fuel cells should not be a priori excluded.  相似文献   

19.
熔融碳酸盐燃料电池(MCFC)性能研究   总被引:1,自引:0,他引:1  
简要叙述了MCFC微观工作过程,然后分别详细讨论了压力,温度,反应气体的组分和利用率,电流密度,电解质板结构和电解质的成分,杂质和运动时间对MCFC性能和寿命的曩,并结合文献和实验数据对其机理进行了阐述,最后得出了为提高电池性能和瞎长其寿命的几点结论和建议。  相似文献   

20.
This work considers the use of a Molten Carbonate Fuel Cell (MCFC) system as a power generation and CO2 concentrator unit downstream of the coal burner of an existing production plant. In this way, the capability of MCFCs for CO2 segregation, which today is studied primarily in reference to large-scale plants, is applied to an intermediate-size plant highlighting the potential for MCFC use as a low energy method of carbon capture. A technical feasibility analysis was performed using an MCFC system-integrated model capable of determining steady-state performance across varying feed composition. The MCFC user model was implemented in Aspen Custom Modeler and integrated into the reference plant in Aspen Plus. The model considers electrochemical, thermal, and mass balance effects to simulate cell electrical and CO2 segregation performance. Results obtained suggest a specific energy requirement of 1.41 MJ kg CO2?1 significantly lower than seen in conventional Monoethanolamine (MEA) capture processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号