首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Dry reforming of methane is a very appealing catalytic route biogas (mainly composed by greenhouse gases: carbon dioxide and methane) conversion into added value syngas, which could be further upgraded to produce liquid fuels and added value chemicals. However, the major culprits of this reaction are coking and active phase sintering that result in catalysts deactivation. Herein we have developed a highly stable bimetallic Ni–Rh catalyst supported on mixed CeO2–Al2O3 oxide using low-noble metal loadings. The addition of small amounts of rhodium to nickel catalysts prevents coke formation and improves sintering resistance, achieving high conversions over extended reaction times hence resulting in promising catalysts for biogas upgrading.  相似文献   

2.
Dry reforming of methane (DRM) can be an efficient alternative to convert greenhouse gases and to produce valuable feedstock. In this work, nanostructured nickel - actinide bimetallic oxides (2NiO.ThO2 and NiO.UNiO4) were tested for the first time as DRM catalysts. They were very active and highly selective towards the production of syngas at low temperatures. Their catalytic performance is better than that of a commercial rhodium supported catalyst (5 wt % Rh/Al2O3) used as a reference. In particular, the thorium catalyst was more active and selective at 550 °C than the commercial catalyst, which is a significant “low” temperature for DRM. The nanostructured nickel - actinide bimetallic oxides long-term stability was also remarkable and an important improvement if we consider the behavior of others nickel-based catalysts that normally undergoing significant deactivations due to coke or sintering.  相似文献   

3.
Autothermal reforming (ATR) of iso-octane in the presence of Rh-based catalysts (0.5 wt% of Rh) supported onto γ-Al2O3, CeO2, and ZrO2 were initially carried out at 700 °C with a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of 20,000 h−1. The activity of Rh/γ-Al2O3 was found to be higher than Rh/CeO2 and Rh/ZrO2, with H2 and (H2 + CO) yields of 1.98 and 2.48 mol/mol C, respectively, after 10 h. This Rh/γ-Al2O3 material, however, was potentially susceptible to carbon coking and produced 3.5 wt% of carbon deposits following the reforming reaction, as evidenced by C, H, N, and S elemental analysis. In contrast, Rh/CeO2 catalyst exhibited lower activity but higher stability than Rh/γ-Al2O3, with nearly no carbon being formed within 10 h. To combine the superior activity originated from Rh/γ-Al2O3 with high stability from Rh/CeO2, Rh/CeO2/γ-Al2O3 catalysts with different CeO2 contents were synthesized and examined for the ATR reactions of iso-octane. Compared to Rh/γ-Al2O3, the newly prepared Rh/CeO2/γ-Al2O3 catalysts (0.5 wt% of Rh and 20 wt% of CeO2) showed even enhanced activity during 10 h, and H2 and (H2 + CO) yields were calculated to be 2.08 and 2.62 mol/mol C, respectively. In addition, as observed with Rh/CeO2, the catalyst was further found to be stable with less than 0.3 wt% of carbon deposition after 10 h. The Rh/γ-Al2O3 and Rh/CeO2/γ-Al2O3 catalysts were eventually tested for ATR reactions using commercial gasoline that contained sulfur, aromatics, and other impurities. The Rh/γ-Al2O3 catalyst was significantly deactivated, showing decreased activity after 4 h, while the Rh/CeO2/γ-Al2O3 catalyst proved to be excellent in terms of stability against coke formation as well as activity towards the desired reforming reaction, maintaining its ability for H2 production for 100 h.  相似文献   

4.
Partial oxidation of methane was studied over new Ni nanocatalysts prepared from Ni-impregnated γ-AlOOH, which were compared with their counterparts derived from impregnated γ-Al2O3 and α-Al2O3. The prepared catalysts were characterized by powder X-ray diffraction (XRD), N2-sorption, H2-temperatue programmed reduction, scanning electron microscopy, transmission electron microscopy, thermal gravimetric analysis, CO2- and NH3-temperature-programmed desorption, Raman spectroscopy, CO chemisorption, and diffuse reflectance infrared Fourier transform spectroscopy of adsorbed CO. Employing γ-AlOOH as the support precursor resulted in significantly improved textural properties and catalytic activity. The structure of the support precursor and its surface properties showed a strong influence on the type of Ni active species and their interactions with the support. γ-AlOOH-derived catalysts showed NiO as the dominant Ni species when calcined at 500°C to 650°C, while NiAl2O4 became the sole phase at higher temperatures. On the other hand, mixtures of NiO and NiAl2O4 formed over γ-Al2O3, calcined before impregnation, regardless of the precalcination temperature. All γ-AlOOH-derived catalysts showed higher specific surface areas compared to their counterparts derived from impregnated γ-Al2O3. Upon calcination at moderate temperatures, γ-AlOOH-derived catalysts also showed modified textural and morphological properties of the Ni active particles, including higher Ni dispersion, larger metal surface area, and smaller Ni crystallites. The support precursor and the pretreatment conditions showed a strong influence on the catalytic performance, which was referred to their significant effect on the type of the Ni species and interactions with the support. All catalysts showed higher catalytic activity than the α-Al2O3-derived catalyst, with CH4 conversion between 86% and 88.5% at 700°C. While γ-AlOOH- and γ-Al2O3-derived catalysts calcined at 650°C showed a stable CH4 conversion around 88%, and higher syngas selectivity than the other catalysts, Ni/γ-AlOOH-650 showed the highest selectivity to syngas, with a H2/CO ratio very close to 2.0. The improved Ni dispersion and the enhanced syngas selectivity obtained in the preset work demonstrate that using γ-AlOOH as a support precursor holds a great promise for the development of a new route for more efficient Ni catalysts compared with the widely studied γ-Al2O3 and α-Al2O3 support precursors.  相似文献   

5.
The effects of Y2O3-modification to Ni/γ-Al2O3 catalysts on autothermal reforming of methane to syngas were investigated. It was found that the introduction of Y2O3 (5%, 8%, 10%) lead to significant improvement in catalytic activity and stability, and the H2/CO ratio could be adjusted via controlling the O2/CO2 ratio of the feed gas. According to the characterization results of catalysts before and after reaction, it was found that the Y2O3·γ-Al2O3 supported Ni catalysts had higher NiO reducibility, smaller Ni particle size, higher Ni dispersion and stronger basicity than those of the Ni/γ-Al2O3 catalysts. The analysis of catalysts after reaction showed that the addition of Y2O3 inhibited the Ni sintering, changed the type of coke and decreased the amount of coke on the catalysts. All the experimental results indicated that the introduction of Y2O3 to Ni/γ-Al2O3 resulted in excellent catalytic performances in autothermal reforming of methane, and Y2O3 played important roles in preventing metal sintering and coke deposition via controlling NiO reducibility, Ni particle size and dispersion, and basicity of catalysts.  相似文献   

6.
Nano-clusters of noble metals Ru, Rh, Pd, Pt and Au have been supported on γ-Al2O3, C and SiO2, of which the catalytic activities have been investigated for hydrolysis of NH3BH3. Among these catalysts, the Ru, Rh and Pt catalysts exhibit high activities to generate stoichiometric amount of hydrogen with fast kinetics, whereas the Pd and Au catalysts are less active. Support effect has been studied by testing the hydrogen generation reaction in the presence of Pt supported on γ-Al2O3, VULCAN® carbon and SiO2, and it is found that Pt on γ-Al2O3, which has the smallest particle size, is the most active. Concentration dependence of the hydrogen generation from aqueous NH3BH3 solutions has been investigated in the presence of Pt/γ-Al2O3 by keeping the amount of Pt/γ-Al2O3 catalyst unchanged, which exhibits that the hydrogen release versus time (ml H2 min−1) does not significantly change with increasing the NH3BH3 concentration, indicating that the hydrogen release rate is not dependent on the NH3BH3 concentration and the high activity of the Pt catalyst can be kept at high NH3BH3 concentrations. Activation energies have been measured to be 23, 21 and 21 kJ mol−1 for Ru/γ-Al2O3, Rh/γ-Al2O3 and Pt/γ-Al2O3 catalysts, respectively, which may correspond to the step of B–N bond breaking on the metal surfaces. The particle sizes, surface morphology and surface areas of the catalysts have been obtained by TEM and BET experiments.  相似文献   

7.
Hydrogen production via water-gas shift (WGS) reaction using heavy oil residues as syngas source is an attractive way to improve refinery margin. However, this low cost syngas may present significant concentration of sulfur, leading to poisoning of usual WGS catalysts. Searching for sulfur tolerant catalysts, the performance of niobia supported platinum, gold and copper catalysts was evaluated under near-industrial conditions, in the absence and presence of H2S. Cu/Nb2O5 catalyst was inactive, even under clean conditions. Au/Nb2O5 presented higher activity and complete deactivation when exposed to sulfur, but recovered its catalytic activity with the removal of H2S from the reaction mixture, indicating a reversible deactivation. Pt/Nb2O5 catalyst was the most suitable among the catalysts evaluated to be used in sour conditions, not deactivating when exposed to 50 ppm and 1000 ppm of H2S.  相似文献   

8.
In this study, methane and model biogas were added during the catalytic steam gasification of pine to regulate the syngas composition and improve the quality of syngas. The effects of Ni/γ-Al2O3 catalyst, steam and methane/model biogas on H2/CO ratio, syngas yield, carbon conversion rate and tar yield were explored. The results indicated that the addition of methane/model biogas during biomass steam gasification could increase the H2/CO ratio to about 2. Methane/model biogas, steam and Ni/γ-Al2O3 catalyst significantly affected the quality of syngas. High H2 content syngas with H2/CO ratio of about 2, biomass carbon conversion >85% and low tar yield was achieved under the optimum condition: S/C = 1.5, α = 0.2 and using Ni/γ-Al2O3 catalyst. According to ANOVA, methane and catalyst were the key influencing factors of the H2/CO ratio and syngas yield, and the tar yield mainly depended on the Ni/γ-Al2O3 catalyst. Biogas, as a more environmentally friendly material than methane, can also regulate the composition of syngas co-feeding with biomass.  相似文献   

9.
In total 17 heterogeneous catalysts, with combinations of 4 transition metals (Ni, Ru, Cu and Co) and various promoters (e.g., Na, K, Mg, or Ru) supported on different materials (γ-Al2O3, ZrO2, and activated carbon (AC)), were investigated with respect to their catalytic activity and stability for H2 production from glucose via supercritical water gasification (SCWG). The experiments were carried out at 600 °C and 24 MPa in a bench-scale continuous-flow tubular reactor. Ni (in metallic form) and Ru (in both metallic and oxidized forms) supported on γ-Al2O3 exhibited very high activity and H2 selectivity among all of the catalysts investigated for a time-on-stream of 5-10 h. With Ni20/γ-Al2O3 (i.e., γ-Al2O3 with 20 wt% Ni), a H2 yield of 38.4 mol/kg glucose was achieved, approximately 20 times higher than that obtained during the blank test without catalyst (1.8 mol/kg glucose). In contrast, Cu and Co catalysts were much less effective for glucose SCWG reactions. As for the effects of catalyst support materials on activity, the following order of sequence was observed: γ-Al2O3 > ZrO2 > AC. In addition, Mg and Ru were found to be effective promoters for the Ni/γ-Al2O3 catalyst, suppressing coke and tar formation.  相似文献   

10.
Ni/Y2O3, with Y2O3 support prepared by the conventional precipitation method, was prepared by an impregnation method. The physicochemical properties of Y2O3 and Ni/Y2O3 were characterized by BET, CO2-TPD, NH3-TPD, TPR, XRF and TGA, and compared with those of γ-Al2O3 and Ni/γ-Al2O3, respectively. The catalytic performance of Ni/Y2O3 in the reaction of partial oxidation of methane (POM) to syngas was evaluated and compared with that of Ni/γ-Al2O3 catalyst, too. The results showed that, Y2O3 was a basic support with few acidic sites while γ-Al2O3 was an acidic support. NiO particles supported on Y2O3 were more easily to be reduced than those supported on γ-Al2O3. In the partial oxidation of methane, Ni/Y2O3 catalyst showed high catalytic activity and exhibited better catalytic stability than Ni/γ-Al2O3. After POM reaction at 700 °C for 550 h, methane conversion decreased little and only 2.2 wt% carbon was deposited on Ni/Y2O3 catalyst. Ni/Y2O3 was stable in POM even after a series of reaction temperature variations within the temperature range of 400 ∼ 800 °C.  相似文献   

11.
Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al2O3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al2O3 support on the catalytic performance of Ni/γ-Al2O3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal–support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al2O3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal–support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.  相似文献   

12.
Highly ordered mesoporous γ-Al2O3 particles and MgO materials were synthesized by evaporation induced self-assembly (EISA) and template-free hydrothermal co-precipitation routes, respectively. Ni, Ni–MgO, and Ni–La2O3-containing catalysts were prepared using a wet-impregnation method. The synthesized catalysts were characterized by N2 adsorption–desorption, XRD, SEM-EDS, DRIFTS, XPS, TGA-DTA, and Raman spectroscopy analysis. The mesoporous γ-Al2O3 catalyst support exhibited a high surface area of 245 m2/g and average pore volume of 0.481 cm3/g. The DRIFTS results indicate the existence of large Lewis's acid regions in the pure γ-Al2O3 and metal-containing catalysts. Catalytic activity tests of pure materials and metal-containing catalysts were carried out at the reaction temperature of 750 °C and a feed molar ratio of AA/H2O/Ar:1/2.5/2 over 3 h. Complete conversion of acetic acid and 81.75% hydrogen selectivity were obtained over the catalyst 5Ni@γ-Al2O3. The temperature and feed molar ratio had a noticeable impact on H2 selectivity and acetic acid conversion. Increasing the water proportion in the feed composition from 2.5 to 10 considerably improved the catalytic activity by increasing hydrogen selectivity from 81.75% to 91%. Although the Ni-based γ-Al2O3-supported catalysts exhibited higher activity performance compared to the Ni-based MgO-supported catalysts, they were not as resistant to coke formation as were MgO-supported catalysts. The introduction of MgO and La2O3 into the Ni@γ-Al2O3 and Ni@MgO catalysts' structures played a significant role in lowering the carbon formation (from 37.15% to 17.6%–12.44% and 12.17%, respectively) and improving the thermal stability of the catalysts by decreasing the agglomeration of acidic sites and reinforcing the adsorption of CO2 on the catalysts' surfaces. Therefore, coke deposition was reduced, and catalyst lifetime was improved.  相似文献   

13.
Nickel supported γ-alumina (Ni/γ-Al2O3) catalysts are well-known to be highly active on the autothermal reforming of methane, but to be unstable due to coke deposition. Cerium oxide (CeO2) is one of promising promoter to overcome the fast deactivation of nickel-based catalysts by coke formation. Herein, catalytic behavior of CeO2 over Ni/γ-Al2O3 catalysts on the autothermal reforming of methane was investigated. The catalytic activity was maintained for 100 h with H2/CO molar ratio of 1.9. The formation of CeAlO3 is observed at the reduction and reaction conditions. In this work, it was found that the formation of CeAlO3 promoted the catalytic oxidation toward CO2 and prevented the formation of α-Al2O3 and nickel-aluminate, resulting in stable activity for autothermal reforming of methane.  相似文献   

14.
Steam reforming of methane (SRM) is an immensely important process for the production of hydrogen and syngas (H2, CO). Ni-based alumina supported catalysts are conventionally used in the SRM process, but the coke formation and sintering are still challenging problems to develop an economical process. It was reported that the Lewis basicity of the support obviously plays a crucial role to prevent the coke formation, and basic supports such as calcium aluminate (CAx) has shown superior resistance for carbon deposition, but in case of CAx the major drawback is low thermal conductivity.In this work, in order to improve the catalytic performance of SRM, the Nickel based structured catalysts supported on the modified calcium aluminate (CAx) with silicon carbide (SiC) were prepared. All synthesized catalysts were characterized by various techniques including N2-physisorption, XRD, H2-TPR, XPS, CO2-TPR, TGA, TPH, and thermal conductivity analysis. It was found that the CAx play an important role obtaining higher hydrogen yield and improved resistance to the carbon deposition. Even though, the methane conversion and H2 yield efficiency for Ni supported on SiC modified CAx/Al2O3 (NASC) catalyst was slightly lower than NAS and NAC catalysts, which caused by the weak interaction of active metal, but the NASC catalyst showed superior resistance to the coke formation compared to other catalysts. It was concluded that NASC catalysts is a promising candidates for the production of hydrogen by the steam reforming of methane.  相似文献   

15.
La-modified NiAl2O4/γ-Al2O3?La composites with mesoporous structures were prepared by one-pot template-free strategy and applied for dry reforming of methane (DRM) to syngas. The characterization results confirmed that these materials possessed high specific surface areas, large pore volumes and narrow pore size distributions. The reduced catalysts exhibited excellent catalytic properties as well as long-term stability for DRM reaction. Addition of La showed little influence on the catalyst structure and the mean sizes of metal Ni particles, but could enhance the medium-strength basicity and the accumulation of Ni2+ on the catalyst surface, resulting in the enhancement of intrinsic activity, the reduction of apparent activation energy, and the suppression of carbon deposition for DRM reaction. The catalyst containing 3 wt% La possessed the best catalytic performance. The characterization of spent catalysts also demonstrated that La could effectively prevent the phase transformation of γ-alumina in the DRM process.  相似文献   

16.
Nanofibrous KCC-1 supported Ni–Co bimetallic catalysts were investigated for dry reforming of methane for syngas generation. Monometallic catalysts such as Ni/KCC-1 and Co/KCC-1, and a series of bimetallic Ni–Co/KCC-1 catalysts were prepared by impregnation and co-impregnation method, respectively. All the catalysts were characterized by XRD, FT-IR, HR-SEM, FE-SEM, XPS, FT-Raman, BET, UV–Visible DRS and AAS techniques. Monometallic nickel supported catalyst contains NiO as an active phase, whereas bimetallic nickel catalysts contain Ni2O3, and NiCo2O4 on the surface. In the case of cobalt loaded catalysts, spinel Co3O4 is the dominant active species, apart from NiCo2O4. The addition of cobalt in Ni/KCC-1 has a pronounced effect on the crystallite size, surface area and active species. The hydrogen pretreatment of the catalyst produces bimetallic Ni–Co alloy on the surface. The catalytic activities of the bimetallic catalysts towards dry reforming of methane are better than monometallic catalysts. Mesoporous silica-based KCC-1 offers easy accessibility to the entire surface moieties due to its fibrous nature and the presence of channels, instead of pores. The 2.5%Ni-7.5%Co/KCC-1 showed the maximum CH4 and CO2 conversion along with a remarkably low H2/CO ratio. The life-time test confirms the high thermal stability of the catalysts at 700 °C for 8 h, with less deactivation due to coke formation. The spent catalysts were characterized by XRD, TGA, FT-Raman, and FE-SEM to understand the structural and chemical changes during the reaction. The insignificant D band and G band of graphitic carbon in FT-Raman spectra for the highly active 2.5%Ni-7.5%Co/KCC-1 and 5%Ni–5%Co/KCC-1 catalysts along with TGA results containing 12% weight loss confirms the minimum coke deposition, formation of amorphous carbon and highest coke resistance. The fibrous support restricts the sintering and aggregation of nickel particles as well the deposition of coke. The addition of amphoteric cobalt increases the activity and stability of the catalysts. Ni–Co/KCC-1 with high coke resistance seems to be a promising catalyst for dry reforming of methane.  相似文献   

17.
Steam and autothermal reforming of propane over Ni-Rh/GDC catalysts prepared by coprecipitation and by Pechini method were investigated in the temperature range 873-1073 K. The weight ratio for Ni, Rh and Ce0.8Gd0.2O2 (45:5:50) and the operating temperatures were chosen in order to gain propaedeutical information on fuel reactivity under typical intermediate solid oxide fuel cell (IT-SOFC) operating conditions.The Pechini synthesis allows to obtain catalysts with lower surface area, smaller nickel crystallites and a bimodal distribution of rhodium in comparison to the coprecipitation method. Despite the different methods of synthesis lead to catalysts with different morphological and structural properties, the activity of catalysts is quite similar.At reaction temperature higher than 973 K, under both steam reforming (SR) and autothermal reforming (ATR), the catalysts show high propane conversion and syngas (H2 + CO) productivity.Deactivation of catalysts was observed at 873 and 973 K under SR conditions due to coke formation.In ATR, coke formation was almost completely depressed and the catalysts resulted to be very stable even at low reaction temperature (873 K). In SR coke formation occurs with higher rate on the catalyst having higher Ni dispersion, probably since propane cracking reaction is the pre-eminent phenomenon in promoting coke formation.  相似文献   

18.
In this study, effect of Mg impregnation sequence on the activity of the mesoporous alumina supported Ni catalysts was investigated in dry reforming of methane. Characterization and activity test results showed that Mg incorporation sequence significantly influenced the physicochemical properties and the activity of the catalyst as well as coke deposition during reforming reaction. The synthesized catalysts were characterized by x-ray diffraction, N2 adsorption, temperature programmed reduction, scanning electron microscopy, CO2-temperature programmed desorption, inductively coupled plasma optical emission spectrometry, x-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and pyridine adsorbed diffuse reflectance FTIR spectroscopy techniques. Mg incorporation altered the reduction profile of the monometallic catalyst and increased the reduction temperature of the nickel particles. XRD diffraction peaks corresponding to γ-A2O3 and α-Al2O3, as well as nickel-magnesium spinels and metallic Ni were observed depending on Mg incorporation sequence. The monometallic Ni catalyst showed higher activity than the bimetallic NiMg catalysts. However, coke formation was significantly influenced as a result of synthesis route. Total organic carbon, thermogravimetric analysis and SEM images exhibited that the highest coke formation was obtained over the catalyst which was prepared by sequential impregnation of Mg and then Ni. Almost no coke formation was observed on the spent catalyst, which was synthesized by simultaneously impregnation of Mg and Ni, due to the high interaction between Ni and Mg with the formation of a NiOMgO solid solution during the high calcination temperature.  相似文献   

19.
Rh/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl and Rh/Ni–MgO/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl FeCrAlloy wire mesh supported catalysts were prepared via multistep procedure. They were characterized by XRD, SEM and TEM techniques. A comparative study of autothermal reforming (ATR) of isooctane and simulated gasoline (blends of isooctane, ortho-xylene and naphthalene) over Rh/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl and Rh/Ni–MgO/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl was performed. Both catalysts showed excellent performance in ATR of isooctane at molar ratios of O2:C = 0.51 and H2O:C = 2.59, T = 750°С and GHSV = 10000 h−1. In the ATR of isooctane – o-xylene blend in presence of Rh–Ni-containing catalyst carbon formation was observed. Rh-containing catalyst demonstrated rather good activity and stability even in the case of isooctane – o-xylene – naphthalene blend.  相似文献   

20.
CeO2–ZrO2–Al2O3 composite oxides supported palladium catalysts (Pd/CZA) are promising candidates for catalytic oxidation reactions. However, the efficient and stable oxidation of methane over Pd-based catalysts remains a longstanding challenge. Herein, we present a facile strategy to boost the catalytic performance of Pd/CZA through elaborately tuning the phase structure of supports. Calcining supports at relatively high temperatures (1200, 1300 °C) induced the phase transition of alumina (from γ-to α-) and the development of CeO2–ZrO2 solid solution (CZ). The weak interaction between α-Al2O3 and PdO resulted in an improved reducibility of catalysts. Meanwhile, the higher oxygen mobility originated from well-crystallized CZ phase contributed to the reoxidation of Pd to PdO, giving rise to abundant surface active Pd2+ species. Coupled with the hydrophobicity of α-Al2O3, the catalyst prepared with CZA supports calcined at 1300 °C demonstrated an excellent low-temperature activity, astounding stability and greatly enhanced water resistance towards methane combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号