首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ground wheat solution was used for bio-hydrogen production by dark fermentation using heat-treated anaerobic sludge in a completely mixed fermenter operating in fed-batch mode. The feed wheat powder (WP) solution was fed to the anaerobic fermenter with a constant flow rate of 8.33 mL h−1 (200 mL d−1). Cumulative hydrogen production, starch utilization and hydrogen yields were determined at three different WP loading rates corresponding to the feed WP concentrations of 10, 20 and 30 g L−1. The residual starch (substrate) concentration in the fermenter decreased with operation time while starch consumption was increasing. The highest cumulative hydrogen production (3600 mL), hydrogen yield (465 mL H2 g−1 starch or 3.1 mol H2 mol−1 glucose) and hydrogen production rate (864 mL H2 d−1) were obtained after 4 days of fed-batch operation with the 20 g L−1 feed WP concentration corresponding to a WP loading rate of 4 g WP d−1. Low feed WP concentrations (10 g L−1) resulted in low hydrogen yields and rates due to substrate limitations. High feed WP concentrations (30 g L−1) resulted in the formation of volatile fatty acids (VFAs) in high concentrations causing inhibition on the rate and yield of hydrogen production.  相似文献   

2.
Batch dark fermentation experiments were performed to investigate the effects of biomass and substrate concentration on bio-hydrogen production from acid hydrolyzed ground wheat at 55 °C. In the first set of experiments, the substrate concentration was constant at 20 g total sugar L−1 and biomass concentration was varied between 0.52 and 2.58 g L−1. Total sugar concentration was varied between 4.2 and 23.7 g L−1 in the second set of experiments with a 1.5 g L−1 constant biomass concentration. The highest cumulative hydrogen formation (582 mL, 30 °C, 1 atm), formation rate (5.43 mL h−1) and final total volatile fatty acid (TVFA) concentration (6.54 g L−1) were obtained with 1.32 g L−1 biomass concentration. In variable substrate concentration experiments, the highest cumulative hydrogen (365 mL) and TVFA concentration (4.8 g L−1) were obtained with 19.25 g L−1 initial total sugar concentration while hydrogen gas formation rate (12.95 mL h−1) and the yield (200 mL H2 g−1 total sugar) were the highest with 4.2 g L−1 total sugar concentration.  相似文献   

3.
Waste ground wheat was subjected to acid hydrolysis (pH = 3.0) at 90 °C for 15 min using an autoclave. The sugar solution obtained from acid hydrolysis was subjected to dark fermentation for hydrogen gas production after neutralization. In the first set of experiments, initial total sugar concentration was varied between 3.9 and 27.5 g L−1 at constant biomass (cell) concentration of 1.3 g L−1. Biomass concentration was varied between 0.28 g L−1 and 1.38 g L−1 at initial total sugar concentration of 7.2 ± 0.2 g L−1 in the second set of experiments. The highest hydrogen yield (1.46 mol H2 mol−1 glucose) and the specific formation rate (83.6 ml H2 g−1 cell h−1) were obtained with 10 g L−1 initial total sugar concentration. Biomass (cell) concentration affected the specific hydrogen production rate yielding the highest rate (1221 ml H2 g−1 cell h−1) and the yield at the lowest (0.28 g L−1) initial biomass concentration. The most suitable Xo/So ratio, maximizing the yield and specific rate of hydrogen gas formation was Xo/So = 0.037. Dark fermentation of acid hydrolyzed ground wheat was found to be more beneficial as compared to simultaneous bacterial hydrolysis and fermentation.  相似文献   

4.
Ground wheat powder solution (10 g L−1) was subjected to combined dark and light fermentations for bio-hydrogen production by fed-batch operation. A mixture of heat treated anaerobic sludge (AN) and Rhodobacter sphaeroides-NRRL (RS-NRRL) were used as the mixed culture of dark and light fermentation bacteria with an initial dark/light biomass ratio of 1/2. Effects of wheat starch loading rate on the rate and yield of bio-hydrogen formation were investigated. The highest cumulative hydrogen formation (CHF = 3460 ml), hydrogen yield (201 ml H2 g−1 starch) and formation rate (18.1 ml h−1) were obtained with a starch loading rate of 80.4 mg S h−1. Complete starch hydrolysis and glucose fermentation were achieved within 96 h of fed-batch operation producing volatile fatty acids (VFA) and H2. Fermentation of VFAs by photo-fermentation for bio-hydrogen production was most effective at starch loading rate of 80.4 mg S h−1. Hydrogen formation by combined fermentation took place by a fast dark fermentation followed by a rather slow light fermentation after a lag period.  相似文献   

5.
Continuous combined fermentation of ground wheat starch was realized in an annular-hybrid bioreactor (AHB) for hydrogen gas production. A mixture of pure cultures of Clostridium beijerinkii (DSMZ-791) and Rhodobacter sphaeroides-RV were used as seed cultures in combined fermentation. The feed contained 5 g L−1 ground wheat with some nutrient supplementation. Effects of hydraulic residence time (HRT) on the rate and yield of hydrogen gas formation were investigated. Steady-state daily hydrogen production decreased but, hydrogen yield increased with increasing HRT. The highest hydrogen yield was 90 ml g−1 starch at HRT of 6 days. Hydrolysis of starch and fermentation of glucose to volatile fatty acids (VFA) were readily realized at all HRTs. However, slow conversion of VFAs to H2 and CO2 by photo-fermentation caused accumulation of VFAs in the medium. Specific and volumetric rates of hydrogen formation also decreased with increasing HRT. High hydrogen yields obtained at high HRTs are due to partial fermentation of VFAs by Rhodobacter sp. The system should be operated at HRTs longer than 5 days for effective hydrogen gas formation by the dark and photo-fermentation bacteria.  相似文献   

6.
Dark fermentation of acid hydrolyzed ground wheat starch for bio-hydrogen production by periodic feeding and effluent removal was investigated at different feeding intervals. Ground wheat was acid hydrolyzed at pH = 3 and T = 121 °C for 30 min using an autoclave. The resulting sugar solution was subjected to dark fermentation with periodic feeding and effluent removal. The feed solution contained 9 ± 0.5 g L−1 total sugar supplemented with some nutrients. Depending on the feeding intervals hydraulic residence time (HRT) was varied between 6 and 60 h. Steady-state daily hydrogen production increased with decreasing HRT. The highest daily hydrogen production (305 ml d−1) and volumetric hydrogen production rate (1220 ml H2 L−1 d−1) were obtained at HRT of 6 h. Hydrogen yield (130 ml H2 g−1 total sugar) reached the highest level at HRT = 24 h. Effluent total sugar concentration decreased, biomass concentration and yield increased with increasing HRT indicating more effective sugar fermentation at high HRTs. Dark fermentation end product profile shifted from acetic to butyric acid with increasing HRT. High acetic/butyric acid ratio obtained at low HRTs resulted in high hydrogen yields.  相似文献   

7.
Dark fermentation experiments were performed for bio-hydrogen production from ground wheat starch solution (10 ± 1 g l−1) using periodic feeding and effluent removal. A mixed culture of Clostridium butyricum-NRRL 1024 and Clostridium pasteurianum-NRRL B-598 were used with an initial biomass ratio of 1/1.Effects of wheat starch loading rate on the rate and yield of bio-hydrogen formation were investigated. Substrate loading rate was varied between 0.54 and 5.52 g d−1 (HRT = 6-60 h). The highest hydrogen formation rate (280 ml d−1), volumetric hydrogen formation rate (1857 ml H2 l−1 d−1) and volatile fatty acids (VFAs) concentration were obtained with a substrate loading rate of 5.52 g d−1 (HRT = 6 h). The highest hydrogen yield (109 ml H2 g TS −1) was obtained with a substrate loading rate of 1.38 g d−1.  相似文献   

8.
Ground waste wheat was subjected to combined dark and light batch fermentation for hydrogen production. The dark to light biomass ratio (D/L) was changed between 1/2 and 1/10 in order to determine the optimum D/L ratio yielding the highest hydrogen formation rate and the yield. Hydrogen production by only dark and light fermentation bacteria was also realized along with the combined fermentations. The highest cumulative hydrogen formation (CHF = 76 ml), hydrogen yield (176 ml H2 g−1 starch) and formation rate (12.2 ml H2 g−1 biomass h−1) were obtained with the D/L ratio of 1/7 while the lowest CHF was obtained with the D/L ratio of 1/2. Dark–light combined fermentation with D/L ratio of 1/7 was faster as compared to the dark and light fermentations alone yielding high hydrogen productivity and reduced fermentation time. Dark and light fermentations alone also yielded considerable cumulative hydrogen, but slower than the combined fermentation.  相似文献   

9.
As a renewable energy source bio-hydrogen production from lignocellulosic wastes is a promising approach which can produce clean fuel with no CO2 emissions. Utilization of agro-industrial residues in solid state fermentation (SSF) is offering a solution to solid wastes disposal and providing an economical process of value-added products such as hydrogen.In this study three different particle size of rice husk (<2000 μm, <300 μm, <74 μm) was subjected to batch SSF with a Clostridium termitidis: Clostridium intestinale ratio of 5:1. C. termitidis is a cellulolytic microorganism that has the ability to hydrolyze cellulosic substances and C. intestinale is able to grow on glucose having a potential of enhancing hydrogen production when used in the co-culture. 5 g dw rice husk with 75% humidity was used as substrate in SSF under mesophilic conditions. The highest HF Volume (29.26 mL) and the highest yield (5.9 mL H2 g−1 substrate) were obtained with the smallest particle size (<74 μm). The main metabolites obtained from the fermentation media were acetic, butyric, propionic and lactic acids. The second best production yield (3.99 mL H2 g−1 substrate) was obtained with the middle particle size (<300 μm) rice husk with a HF of 19.71 mL.  相似文献   

10.
Hydrogen gas production potentials of acid-hydrolyzed and boiled ground wheat were compared in batch dark fermentations under mesophilic (37 °C) and thermophilic (55 °C) conditions. Heat-treated anaerobic sludge was used as the inoculum and the hydrolyzed ground wheat was supplemented by other nutrients. The highest cumulative hydrogen gas production (752 ml) was obtained from the acid-hydrolyzed ground wheat starch at 55 °C and the lowest (112 ml) was with the boiled wheat starch within 10 days. The highest rate of hydrogen gas formation (7.42 ml H2 h−1) was obtained with the acid-hydrolyzed and the lowest (1.12 ml H2 h−1) with the boiled wheat at 55 °C. The highest hydrogen gas yield (333 ml H2 g−1 total sugar or 2.40 mol H2 mol−1 glucose) and final total volatile fatty acid (TVFA) concentration (10.08 g L−1) were also obtained with the acid-hydrolyzed wheat under thermophilic conditions (55 °C). Dark fermentation of acid-hydrolyzed ground wheat under thermophilic conditions (55 °C) was proven to be more beneficial as compared to mesophilic or thermophilic fermentation of boiled (partially hydrolyzed) wheat starch.  相似文献   

11.
Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H2 g−1 starch and a specific hydrogen production rate of 32.1 ml H2 g−1 h−1.  相似文献   

12.
Dark fermentation effluent of wheat powder solution was subjected to light fermentation for bio-hydrogen production using different light sources and intensities. Tungsten, fluorescent, infrared (IR), halogen lamps were used as light sources with a light intensity of 270 Wm−2 along with sunlight. Pure culture of Rhodobacter sphaeroides-RV was used in batch light fermentation experiments. Halogen lamp was found to be the most suitable light source yielding the highest cumulative hydrogen formation (CHF, 252 ml) and yield (781 ml H2 g−1 TVFA). In the second set of experiments, light fermentations were performed at different light intensities (1–10 klux) using halogen lamp. The optimum light intensity was found to be 5 klux (approx. 176 Wm−2) resulting in the highest CHF (88 ml) and hydrogen yield (1037 ml H2 g−1TVFA). Hydrogen formation was limited by the availability of light at low light intensities below 5 klux and was inhibited by the excess light above 5 klux.  相似文献   

13.
Three different pre-treatment methods were applied on two different anaerobic sludge cultures and their mixtures in order to investigate the effects of pre-treatment methods on bio-hydrogen production from dark fermentation of waste ground wheat solution. Repeated heat, chloroform and combinations of heat and chloroform pre-treatment methods were applied to anaerobic sludges from different sources. Repeated heat treatment (2 × 5 h) was found to be more effective in selecting hydrogen producing bacteria compared to the other treatment methods tested on the basis of cumulative hydrogen production. The highest hydrogen formation (652 ml) and specific hydrogen production rate (SHPR = 25.7 ml H2 g−1 cells h−1) were obtained with the anaerobic sludge pre-treated by repeated boiling. Both the type of anaerobic sludge and the pre-treatment method had considerable effects on bio-hydrogen production from wheat powder solution (WPS) by dark fermentation.  相似文献   

14.
This work builds a real-time monitoring and control system for bio-hydrogen production fermentation plants using LabVIEW software. The best fermentation environment factors pH and temperature are successfully estimated with stable control ability to create the best hydrogen production environment. The concentrate molasses fermentation waste is as nutrients to hold biomass hydrogen production by dark fermentation in a continuous stirred anaerobic bioreactor, CSABR. In order to verify the applicability of this system, this study compares the proposed anaerobic bioreactor system which's maximum hydrogen production was 3.12 (L/Day) and the system with the fuzzy controller which's hydrogen production rose to 13.44 (L/Day). The result shows that the proposed fuzzy control can not only control feeding pump and heater operations, but also successfully reduce the energy required for hydrogen production, making sure the growth of micro-organisms is in the best environmental conditions for the best growth rate and raise of the maximum hydrogen production.  相似文献   

15.
微波预处理稻壳对纤维素酶固态发酵的影响   总被引:8,自引:0,他引:8  
以稻壳为原料,通过微波预处理后用于固态发酵生产纤维素酶,研究了微波处理对后续发酵过程的影响。采用正交试验与单因素试验确定了微波处理的条件,并分析了微波功率与处理时间对发酵过程中纤维素酶活性及戊糖、还原糖含量的影响。试验结果表明,用功率为300W的微波处理稻壳7min后进行发酵,可以得到最高的纤维素酶酶活,其中滤纸酶活(干基质)可达7.09 IU/g,CMC酶活(干基质)可达87.24 IU/g,分别比未经处理的稻壳提高了21%和15%。若以单位能耗产生的酶活增加量计算,微波处理稻壳5min后发酵,可以得到最高的酶活性增加量。  相似文献   

16.
Microalgal biomass has recently been one of the most widely studied feedstocks for bio-hydrogen production, owing to its richness in fermentable components, e.g. polysaccharides and proteins, and high biomass productivity. In this study, biomass of microalga Chlorella sp. TISTR 8411 was converted to hydrogen through a sequential process consisting of an anaerobic solid-state fermentation (ASSF) followed by a dark fermentation. The microalga was grown photoautothrophically in 80-L rectangular glass tanks and then scaled-up to a 240-L open pond for the production of biomass. The highest biomass concentration attained was 4.45 g L−1. The biomass was harvested with over 90% flocculation efficiency at pH 11.5 and a biomass concentration of 2.6 g/L. The sequential process gave a total hydrogen yield (HY) of 16.2 mL/g-volatile-solid (VS), of which 11.6 mL/g-VS was from ASSF. The high HY obtained from the ASSF indicated that it was effective and could be integrated with a conventional hydrogen production process to improve energy recovery from biomass.  相似文献   

17.
The key process parameters of solid state enzymolysis for the generation of soluble sugar (SS) and bio-hydrogen production from corn stalk were optimized by the response surface methodology (RSM) based on a three factor-five level central composite design (CCD), respectively. The result showed that the optimal solid state enzymolysis condition from corn stalk was 47.7 °C, SCED of 0.054 g/g and 10.3 days for the maximum SS yield of 526 mg/g-TVS. Correspondingly, the optimal enzymolysis conditions from corn stalk appeared at 46.3 °C, SCED of 0.049 g/g and 7.5 days for the maximum hydrogen yield of 205.5 mL/g-TVS from the hydrolyzed substrate by the next dark fermentation. In addition, the bio-hydrogen production mechanism from corn stalk was preliminary investigated by XRD and SEM analyses. The results suggested that the solid state enzymolysis of substrate played a vital role in the effective conversion of corn stalk into bio-hydrogen by dark fermentation.  相似文献   

18.
Hydrogen gas production from sugar solution derived from acid hydrolysis of ground wheat starch by photo-fermentation was investigated. Three different pure strains of Rhodobacter sphaeroides (RV, NRLL and DSZM) were used in batch experiments to select the most suitable strain. The ground wheat was hydrolyzed in acid solution at pH = 3 and 90 °C in an autoclave for 15 min. The resulting sugar solution was used for hydrogen production by photo-fermentation after neutralization and nutrient addition. R. sphaeroides RV resulted in the highest cumulative hydrogen gas formation (178 ml), hydrogen yield (1.23 mol H2 mol−1 glucose) and specific hydrogen production rate (46 ml H2 g−1 biomass h−1) at 5 g l−1 initial total sugar concentration among the other pure cultures. Effects of initial sugar concentration on photo-fermentation performance were investigated by varying sugar concentration between 2.2 and 13 g l−1 using the pure culture of R. sphaeroides RV. Cumulative hydrogen volume increased from 30 to 232 ml when total sugar concentration was increased from 2.2 to 8.5 g l−1. Further increases in initial sugar concentration resulted in decreases in cumulative hydrogen formation. The highest hydrogen formation rate (3.69 ml h−1) and yield (1.23 mol H2 mol−1 glucose) were obtained at a sugar concentration of 5 g l−1.  相似文献   

19.
A microwave-assisted acid pretreatment (MAP) strategy has been developed to enhance hydrogen production via thermophilic fermentation of corn stover. Pretreatment of corn stover by combining microwave irradiation and acidification resulted in the increased release of soluble substances and made the corn stover more accessible to microorganisms when compared to thermal acid pretreatment (TAP). MAP showed obvious advantages in short duration and high efficiency of lignocellulosic hydrolysis. Analysis of the particle size and specific surface area of corn stover as well as observation of its cellular microstructure were used to elucidate the enhancement mechanism of the hydrolysis process by microwave assistance. The cumulative hydrogen volume reached 182.2 ml when corn stover was pretreated by MAP with 0.3 N H2SO4 for 45 min, and the corresponding hydrogen yield reached 1.53 mol H2/mol-glucose equivalents converted to organic end products. The present work demonstrates that MAP has potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable biofuel.  相似文献   

20.
This study reports hydrogen gas (H2) production from molasses by hot spring microflora in three stages. During the first two stages most convenient temperature, inoculation percentage (INP) ensuring the highest H2 yield and rate were determined using suspended culture. Then, H2 was produced by the same culture immobilized on porous ceramic rings at three different hydraulic retention times. For the suspended culture experiments, the most effective H2 production resulting 202.32 mL H2/g COD was obtained at 37 °C with 10 INP. The highest H2 formation of 534.35 mLH2/d was realized for the biofilm culture at 0.53-day hydraulic retention time and H2 production using hot spring microflora in biofilm form was found to be promising. The pH of the experiments remained stable around 5.5–6.5 without a requirement for pH adjustment during the fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号