首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To fabricate effective and stable OER electrode in water electrolysis, self-doped TiO2 nanotube arrays which has a higher electrical conductivity than pristine TiO2 nanotube arrays was used as the support for loading IrO2. The self-doped TNTA was fabricated by a simple electrochemical reduction of TNTA in neutral electrolyte solution, and then IrO2 nano particles were deposited by pulse electro-deposition method. The cyclic voltammetric behavior, electrical conductivity and micro structure of self-doped TNTA prepared at different reduction potential were characterized to obtain an optimal performance, and self-doped TNTA prepared under ?1.9 V (vs. Ag/AgCl) shows the best electrochemical performance. After depositing IrO2, the OER activity and stability of new electrodes were also determined. Due to the enhanced electrical conductivity of support, the mass activity of IrO2/self-doped TNTA are 50 times higher than IrO2/TNTA. The OER stability of new electrode was evaluated under constant current of 5 mA/cm2, IrO2/TNTA and IrO2/Ti were also tested for comparison. A higher stability of IrO2/self-doped TNTA electrode is observed than the other two electrodes, and XPS studies indicate a lower oxidation state of Ir in IrO2/self-doped TNTA, this shows a possible interactions between IrO2 and the new support.  相似文献   

2.
The effects of several modifications on TiO2 P25 in producing hydrogen from glycerol–water mixture have been investigated. Prior to further modification, TiO2 underwent hydrothermal treatment at 130°C for several hours to obtain nanotube shape. TiO2 nanotubes (TiNT) was then doped with platinum (Pt) and nitrogen (N) by employing photo‐deposition and impregnation method, respectively. SEM and XRD results showed that Pt‐N‐TiNT was successfully obtained as pure anatase crystal structure. The effects of glycerol content to photocatalytic activity of hydrogen production have also been studied, result in 50%v of glycerol as the optimum concentration correspond to the stoichiometric volume ratio of glycerol reforming. The results of photo‐production test showed that TiNT (nanotube) could enhance hydrogen generation by two times compared with unmodified P25 (nanoparticle). Meanwhile, simultaneous modification of TiNT by Pt and N dopants (Pt‐N‐TiNT) lead to activity improvement up to 13 times compared with P25. The output of this study may contribute toward finding an alternative pathway to produce H2 from renewable resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The electrochemical activity and thermal stability of the Pt/TiO2-C were evaluated in the oxygen reduction reaction (ORR) in acid medium at different temperatures. The platinum was selectively deposited onto the TiO2 (Ebg = 2.3 eV) by the photo-irradiation of platinum precursor (Pt4+→Pt0). The Pt/TiO2-C electrocatalyst prepared was characterized by XRD, TEM/EDS, cyclic and lineal voltammetry techniques. TEM images indicated that platinum nanoparticles (<5 nm) were deposited in agglomerates form around the oxide sites. EDS and XRD results confirm the composition and crystalline structure of Pt/TiO2-C. The thermal stability and electrochemical activity of the Pt/TiO2-C for ORR at different temperatures (298–343 K) is higher than Pt/C commercial sample (Pt-Etek). A more favorable apparent enthalpy of activation for Pt/TiO2-C was greatly influenced by addition of oxide in the catalyst compare to Pt-Etek. Single H2/O2 fuel cell performance results of Pt/TiO2-C show an improvement of the power density with the increase of the temperature.  相似文献   

4.
Herein, catalytic aqueous phase photoreforming of cellulose was carried out over Pt/m-TiO2 (i.e., mixed phase of anatase and rutile) and Pt/anatase catalysts to investigate the effect of the TiO2 support structure and Pt loading on the production of H2. The effect of the TiO2 support on the properties of the resulting Pt/TiO2 catalysts (such as actual Pt loading and BET surface area) was not significant. At low Pt loading of 0.16 wt.%, the TiO2 supports affected the sub-nanometre Pt structures which was confirmed by the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) characterisation (using CO as the probe). Conversely, the effect of TiO2 supports on larger Pt particles (on 1 wt.% catalysts) was insignificant possibly due to the reduced effect of restructuration of bigger Pt particles on the TiO2 supports. With an increase in Pt loading from 0.16 wt% to 1.00 wt.%, the normalised H2 production rate (with respect to the actual supported Pt amount and specific surface area of the catalysts) showed a decreasing trend over the two types of the catalysts, i.e., from 10.6 to 1.4 μmol h−1 m−2 mgPt−1 for Pt/m-TiO2, and from 8.5 to 1.2 μmol h−1 m−2 mgPt−1 for Pt/anatase. Specifically, large Pt particle sizes reduced the CO2/H2 production from cellulose photoreforming over both Pt/m-TiO2 and Pt/anatase catalysts, indicting an important role played by Pt particle size in photoreforming. Interestingly, in this study, the m-TiO2 supported catalysts only showed the benefits of enhanced charge separation across the phase junction in producing H2 with small Pt particles (at sub-nanometre), whilst, when large Pt particles (at around 1–2 nm) were supported, such a benefit was not significant in cellulose photoreforming. The promoting effect of small, sub-nm particles is attributed to the better capture of photoelectrons from bulk TiO2 and better activity of H+ coupling on small Pt particle. Further fundamental study on such guest-host interactions is devised to optimise Pt/TiO2 catalysts for improving H2 production from photoreforming reactions.  相似文献   

5.
In this paper, TiO2 nanotubes/Pt/C (TNT/Pt/C) catalysts for ethanol electro-oxidation were prepared by co-mixing method in solution. TEM and XRD showed that uniform anatase TiO2 nanotubes were about 100 nm in length and 8 nm in diameter and the TGA results indicated that the amount of H2O contained in TiO2 nanotubes was much more than that in anatase TiO2. The composite catalysts activities were measured by cyclic voltammetry (CV), chronoamperometry and CO stripping voltammetry at 25 °C in acidic solutions. The results demonstrated that the TNT can greatly enhance the catalytic activity of Pt for ethanol oxidation and increase the utilization rate of platinum. The CO stripping test showed that the TNT can shift the CO oxidation potential to lower direction than TiO2 does, which is helpful for ethanol oxidation.  相似文献   

6.
The electrochemical stability of Pt deposited on TiO2 based nanofibers was compared with commercially available carbon supported Pt. Prior to the Pt deposition the TiO2 material, which was either undoped or Nb doped, was air calcined. In one case the undoped TiO2 was also reduced in a hydrogen atmosphere. XRD analysis revealed that the unreduced TiO2 was present in the anatase phase, irrespective of whether the Nb dopant was present, whereas the rutile phase was formed due to reduction with H2. The diameter of the TiO2 fibers varied from 50 to 100 nm, and the average Pt particle diameter was approximately 5 nm. Pt supported on TiO2 was more stable than Pt supported on C when subjected to 1000 voltammetric cycles in the range of 0.05-1.3 V vs. RHE. Nb doped TiO2 showed the highest stability, retaining 60% of the electrochemically active surface area after 1000 cycles compared to the state after 100 cycles, whereas the carbon supported catalyst retained 20% of the active surface area. The commercial catalyst had the highest oxygen reduction activity due to its larger specific area (17.1 m2 g−1 vs. 5.0 m2 g−1 for Pt/TiO2-Nb, measured after 100 cycles) and the higher support conductivity. The Pt supported on Nb doped or on H2 reduced TiO2 was more active than Pt supported on air calcined and otherwise unmodified TiO2.  相似文献   

7.
Here we report on Bi2O3 clusters immobilized on anatase TiO2 nanostructures for an enhanced rate of photocatalytic H2 evolution. Structural, morphological, and optical properties of the Bi2O3@TiO2 nanocomposite (BT) were characterized by a series of techniques including X-ray diffraction, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy and electrochemical impedance spectroscopy. The catalytic H2 evolution experiments were carried out under different light sources: natural solar light, LED UV (365 ± 5 nm) and LED visible (420 ± 5 nm) light source. Under the solar light a pristine anatase TiO2 nanostructured (TNS) catalyst generated 4.20 mmol h?1 g?1, whereas in the presence of Bi2O3@TNS showed much higher H2 production 26.02 mmol h?1 g?1. The photocatalytic activity of the BT and its reproducible performance for five recycles is ascribed to an efficient separation of photogenerated charge carriers. A plausible reaction mechanism for the H2 generation is proposed.  相似文献   

8.
CuO1?x cluster-modified TiO2 (CuO1?x/TiO2) photocatalysts were prepared by an in-situ photoreduction deposition of Cu on TiO2 powder support using copper acetate as a Cu source. The prepared samples without any Pt co-catalyst present an especially high photocatalytic H2-evolution activity under solar light irradiation with 5% glycerol as sacrificial agent. The optimal CuO1?x/TiO2 catalyst with only 1 wt% CuO1?x exhibits a high activity of 1725 μmol h?1 g?1 for H2 evolution, which reaches 120 times that of TiO2. The high photocatalytic activity of H2 production is attributed to the highly dispersed CuO1?x nano clusters on the surface of the TiO2. In addition, Pt/CuO1?x/TiO2 was also prepared by loading Pt on CuO1?x/TiO2 sample, and its photocatalytic hydrogen evolution activity is enhanced 1.8 times compared with that of Pt/TiO2 for overall water splitting reaction under solar light, demonstrating that a small amount CuO1?x wondrously improves the photocatalytic activity of Pt/TiO2 for overall water splitting reaction. This paper reports an economic and simple approach to prepare a photocatalyst with high hydrogen-production activity.  相似文献   

9.
In this study, a series of CeO2–ZrO2 and CeO2–TiO2 materials with different composition were prepared, characterized by BET and XRD analysis, and their hydrothermal stability was studied by subjecting the samples to acetic acid solutions at 533 K. All of the materials, especially C1Z1 (50 mol% CeO2 with 50 mol% ZrO2) and C1T1 (50 mol% CeO2 with 50 mol% TiO2), exhibited excellent stability with no phase transformation and minimal decrease in their specific surface area (SSA) was observed even after 16 h. After being loaded by Pt, these catalysts were used for the aqueous phase reforming (APR) of the low-boiling fraction of bio-oil (LBF) to investigate their catalytic performance. Among these catalysts Pt/C1Z1 and Pt/C1T1 showed superior catalytic activity, probably due to their lowest reduction temperature and the largest amount of O vacancies generated by the reduction of the surface oxygen of well-dispersed CeO2. Thus, Pt/C1Z1 and Pt/C1T1 were chosen to investigate their recyclability. The catalytic activity and H2 selectivity of Pt/C1Z1 and Pt/C1T1 can be almost recovered after being calcined in air at 773 K for regeneration. After three cycles, the particle size of Pt/C1Z1 and Pt/C1T1 only experienced a slight increase, while for Pt/Al2O3 it increased from 2.9 nm to 7.8 nm. So, compared with Pt/Al2O3, the Pt/C1Z1 and Pt/C1T1 catalysts were identified as effective and recyclable candidates for the production of H2 rich fuel gas from APR of LBF.  相似文献   

10.
In this paper, the surface states of Pt/TiO2 thin film were tested in air, H2 and N2 flows. Pt/TiO2 was prepared by means of photoreduction of on anatase nano-TiO2 powders and was coated on the microscopy glass using powder–sol technique. Powder conductivity method was applied in the analysis of surface states. The experimental results show that a new surface state was formed in air flow; which was 0.43 eV lower than the conduction band edge of TiO2. In N2 flow, three surface states, with the energy levels of 0.42, 0.62 and 0.90 eV, respectively, were detected. Compared with that tested in airflow, 0.42 and 0.62 eV could be attributed to Pt and floating bond of TiO2 respectively, while 0.90 eV might have resulted from the Ti3+ formed at high temperature in N2 flow. The conductivity of the sample tested in H2 flow increased significantly and was almost unchanged with temperature, which could be interpreted by the dissociative adsorption of H2 on Pt.  相似文献   

11.
The heterojunction of ZnO was deposited on hydrogenated TiO2 nanotube arrays (H–TiO2) by atomic layer deposition (ALD) with various cycles. The ZnO was uniformly wrapped with the H–TiO2 samples and the thickness could be accurately controlled by the cycle numbers of ALD. The higher growth rate ~2.7 Å/cycle was obtained due to the surface amorphous layer, compared with the air-treated samples (A-TiO2), ~2.3 Å/cycle. When the cycle numbers increased to 200, nanowire arrays appeared. Interestingly, the absorption in the visible light region improved more significantly when ALD ZnO was employed for the H–TiO2 rather than the A-TiO2 samples. The H–TiO2 samples with 42 nm of ALD ZnO exhibited enhanced photoelectrochemical water splitting performances, compared with the A-TiO2 with 42 nm of ALD ZnO. This was related to the higher degree of the electronic band bending and improved photo-response in the UV and visible light region, resulting from the oxygen vacancies.  相似文献   

12.
In this study, anatase TiO2 nanorods with exposed high-energy {100} and {001} facets and low-energy {101} facets were fabricated in the presence of surfactants cetyltrimethylammonium bromide, didecyldimethylammonium bromide, and ammonia via a facile hydrothermal method without the erosive reagent hydrofluoric acid. The particle size and morphology were mainly tuned by regulating the hydrothermal temperature. When the temperature was increased from 150 °C to 180 °C and 200 °C, the length of the nanorods decreased from 700-1000 nm to 400–500 nm and 100–200 nm, respectively. Concurrently, the edges and tops of the truncated tetragonal pyramid of the TiO2 nanorods became blurry and flattened. The synthesized typical TiO2 nanorods were then used as photocatalysts, and their performance during the direct generation of H2 from water was evaluated. The TiO2 nanorods obtained at 150 °C successfully produced high amounts of H2 evolution (281.36 μmol) in the presence of methanol as a sacrificial agent under ultraviolet light irradiation for 4 h. The outstanding photocatalytic activity of the nanorods was mainly ascribed to the formation of surface heterojunctions in the edges and corners between adjacent high-energy {001} or {100} facets and low-energy {101} facets. The formed heterojunctions could facilitate charge separation through preferential carrier flow toward the specific facets.  相似文献   

13.
MnO2–TiO2 nanotube array composite electrodes were prepared through depositing MnO2 onto TiO2 nanotube arrays obtained by anodization of the titanium foam and the effect of morphologies of TiO2 nanotube arrays on the performance of the electrode was investigated. Results show that the wall thickness, the tube diameter and the tightness among the nanotubes affected the performance of composite electrodes. The areal, quality and volume capacitance value of the optimized sample reached up to 436.2 mF/cm2, 1470.8 mF/g and 5452.5 mF/cm3, respectively, at a current density of 0.1 mA/cm2, which were significantly higher than those of the MnO2–TiO2 nanotube array composite electrodes using planar titanium foil as the current collector. The capacitance retention was 85.7% after 3000 cycles. In addition, the influences of the cations (Li+, Na+, K+, NH4+) and anions (Cl?, Br?, I?, CH3COO?) in the testing electrolytes on the capacitance properties were also studied in detail.  相似文献   

14.
CuOx–NiO bimetallic oxides modified TiO2 catalysts were prepared via a precipitation-photoreduction approach for photocatalytic H2 production. 0.9%Cu0.1%Ni/TiO2 exhibited the highest H2 evolution rate (about 55.4 μmol/g/min) under UV–visible light irradiation (350–780 nm), which is higher than the sum of CuOx/TiO2 and NiO/TiO2 catalyst. Cu species exhibited more reducing valence state including Cu0 when deposited on NiO/TiO2 compared with deposited on TiO2. The polyvalent Cu species lead to enhanced photocurrent and reduced transfer resistance confirmed by photoelectron chemical analysis. CuOx–NiO modification of the TiO2 surface is beneficial for the photoexcited electron transfer, which suppresses electrons recombination. The lifetime of photoexcited electrons was enhanced greatly from 1.16 (TiO2) to 5.15 ns (CuOx–NiO/TiO2). A multiple electrons transfer mechanism for polyvalent bimetallic oxides co-modified TiO2 was proposed based on careful analysis. This work demonstrated a polyvalent bimetallic oxides modified TiO2 system with efficient photocatalytic H2 production which can provide some insightful understanding for bimetallic metal oxides co-catalyst design and H2 evolution mechanism.  相似文献   

15.
Addition of NaBF4 during anodic synthesis of TiO2 nanotube arrays (TNTAs) photocatalyst and its application for generating hydrogen from glycerol–water solution has been investigated. The TNTAs were synthesized by anodic oxidation of titanium metal in glycerol electrolyte solution containing NH4F. During the process, the NaBF4 with different concentrations were added to the solution. Annealing of the formatted TNTAs were performed at 500 °C for 3 h under 20% H2 in argon atmosphere, to produce crystalline phase photocatalyst. FESEM analysis showed that self-organized and well ordered TNTAs have range of inner diameters, wall thicknesses and lengths approximately 62–130 nm, 27 nm and 1.53 μm, respectively. FTIR analysis indicated that carbon, nitrogen and boron were incorporated into the TNTAs lattice. Refer to UV–Vis DRS and XRD analysis, the TNTAs photocatalysts prepared have the band gap range of 2.70–3.10 eV, with mostly have anatase phase. The NaBF4 addition during synthesis, resulted modified TNTAs that can reduce the recombination of photo-induced electrons-holes. Photocatalytic hydrogen production test, from glycerol–water solution, indicated that TNTAs with the addition of NaBF4 during anodic synthesis process showed higher hydrogen production comparing to the one without NaBF4 addition. Among them the TNTAs,b (with the addition 5 mM of NaBF4) showed up to 32% improvement in the hydrogen production and can be considered as the optimum condition.  相似文献   

16.
The direct methanol fuel cell (DMFC) is currently one of the most promising alternative power sources because of its high energy, simple design and operation. However, the DMFC still faces several problems, such as sluggish methanol oxidation and oxygen reduction, as well as a high methanol crossover. In other areas of study, it is well-known that methanol can be photocatalytically oxidized by wide band gap semiconductors under solar illumination. Methanol has been used in photocatalytic water splitting to enhance the performance of photo-electrochemical cells (PECs). Therefore, by combining photocatalytic and electro-catalytic mechanisms, methanol is expected to promote a new type of photo-assisted DMFC. In this work, the semiconductor TiO2 was used as a photo-catalyst in a PEC using a methanol solution. A TiO2 P25 suspension was cast onto carbon paper and then dried at 80 °C for 60 min. The photo-electrochemical measurements were carried out in a 3-arm electrochemical cell, using Pt wire as the counter electrode and Ag/AgCl as the reference electrode. Linear scan voltammetry (LSV) was carried out using a 20 V/400 mA potentiostat. The current densities of the electrode were monitored with and without simulated solar illumination. From the investigation, the current density of the TiO2 electrode under solar illumination was higher than it was without solar illumination. However, the value is low due to the low activity of TiO2 under visible light illumination. Further studies were carried out by combining TiO2 with a carbon material and a noble metal alloy to maximize the current density. This modified photo-catalyst can be utilized in a new photo-assisted DMFC to produce higher electricity.  相似文献   

17.
Decoration of semiconductors with plasmonic nanoparticles provides a new direction for efficient solar water splitting for hydrogen production. Herein, Ag nanoparticles as the plasmonic metal were electrodeposited on a TiO2 nanotube arrays (TNTA) photoelectrode by controlling deposition-charge density. The resulting Ag/TNTA electrode with 10–50 nm diameter Ag nanoparticles exhibited a higher photocurrent density and hydrogen production rate than a bare TNTA electrode under AM 1.5 irradiation. The origins of this enhancement were explored by analyzing the photoelectrochemical behaviors with the relevant optical properties. The absorption of these Ag/TNTA electrodes in the visible light region increased owing to the surface plasmon resonance (SPR) effect of the Ag nanoparticles, and only low photocurrent densities under visible light irradiation were observed. The overall enhancement is owing to the greater incident photon-to-electron conversion efficiency in the 300–400 nm range that is more dependent on the interfacial charge transfer from TNTA to Ag nanoparticles. The localized electronic field of the SPR also reduces the electron transport time in the Ag/TNTA electrodes.  相似文献   

18.
Highly-ordered TiO2 nanotube arrays (TNTAs) were fabricated on Ti sheets by electrochemical anodization. Uniform Pt nanoparticles with an average diameter of 3 nm could be successfully located on the TiO2 nanotubes on only one side (Pt/TNTAs) or both sides of the Ti sheet (Pt/TNTAs/Pt). Pt/TNTAs, the single-sided Pt deposited TNTAs, could be directly used to split water without a counter electrode. The hydrogen evolution rate can reach 120 μmol h−1 cm−2 in a mixed solution of 0.5 M Na2SO4 and 0.5 M ethylene glycol without any applied bias, which is six times of that by the pure TNTAs. In comparison to the traditional three electrode system, this single-sided Pt deposited TNTAs is a much more simple and efficient water splitting system. Meanwhile, the photoelectrical conversion mechanism has been investigated in detail.  相似文献   

19.
Highly ordered TiO2 nanotube arrays fabricated by anodization are very attractive to dye-sensitized solar cells (DSCs) due to their superior charge percolation and slower charge recombination. However, the efficiency of TiO2-nanotube-based DSCs is 6.89%, which is still lower than that of TiO2-nanoparticle-based DSCs. We have suggested the transplanting the highly ordered TiO2 nanotube arrays to FTO glass to improve the performance of TiO2-nanotube-based DSCs. DSCs based on transplanted TiO2 nanotube arrays and TiO2 nanoparticles were fabricated by same process and materials to exclude the unexpected factors. In TiO2 thickness of ca. 15 μm, the efficiency of 2.91% in front-side illuminated DSCs based on TiO2 nanotube arrays was higher than those in back-side illuminated DSCs based on TiO2 nanotube arrays and in front-side illuminated DSCs based on TiO2 nanoparticle. Front-side illuminated DSCs based on TiO2 nanotube arrays having various thicknesses were successfully fabricated. The efficiency in DSCs having 20.0 μm thick TiO2 nanotube arrays was improved to 5.36% by TiCl4 treatment.  相似文献   

20.
Cerium (Ce3+) doped TiO2 powder was synthesized by a sol-gel method and characterized by Transmission Electron Microscope (TEM), X-ray Diffraction (XRD), UV–Vis Diffuse Reflectance Spectroscopy (UV-DRS), Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The Ce3+ doping strongly reduced the band gap of the TiO2 from 3.2 eV (UV) to 2.7 eV (visible region). The photocatalytic activity of Ce3+ doped TiO2 catalysts was evaluated by hydrogen production from sulphide wastewater under visible light illumination. The photocatalytic production of H2 was studied in a batch recycle tubular photocatalytic reactor. The results show that 0.4% Ce3+–TiO2 suspended in 500 mL of simulated sulphide wastewater irradiated at 150 W visible lamp produced maximum H2 of 6789 μmol h?1. It was noticed that the Ce3+ doped TiO2 performs well than Nano TiO2 and P25 TiO2 photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号