首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The nanoscaled Ni-based compounds (Ni3C, Ni3N, NiO and Ni2P) are synthesized by chemical methods. The MgH2-X (X = Ni3C, Ni3N, NiO and Ni2P) composites are prepared by mechanical ball-milling. The dehydrogenation properties of Mg-based composites are systematically studied using isothermal dehydrogenation apparatus, temperature-programmed desorption system and differential scanning calorimetry. It is experimentally confirmed that the dehydrogenation performance of the Mg-based materials ranks as following: MgH2Ni3C, MgH2Ni3N, MgH2NiO and MgH2Ni2P. The onset dehydrogenation temperatures of MgH2Ni3C, MgH2Ni3N, MgH2NiO and MgH2Ni2P are 160 °C, 180 °C, 205 °C and 248 °C, respectively. The four Mg-based composites respectively release 6.2, 4.9, 4.1 and 3.5 wt% H2 within 20 min at 300 °C. The activation energies of MgH2Ni3C, MgH2Ni3N, MgH2NiO and MgH2Ni2P are 97.8, 100.0, 119.7 and 132.5 kJ mol?1, respectively. It' found that the MgH2Ni3C composites exhibit the best hydrogen storage properties. Moreover, the catalytic mechanism of the Ni-based compounds is also discussed. It is found that Ni binding with low electron-negativity element is favorable for the dehydrogenation of the Mg-based composites.  相似文献   

2.
In this work, we have investigated the hydrogen release and uptake pathways storage properties of the MgH2Na3AlH6 with a molar ratio of 4:1 and doped with 10 wt% of TiF3 using a mechanical alloying method. The doped composite was found to have a significant reduction on the hydrogen release temperature compared to the un-doped composite based on the temperature-programme-desorption result. The first stage of the onset desorption temperature of MgH2Na3AlH6 was reduced from 170 °C to 140 °C with the addition of the TiF3 additive. Three dehydrogenation steps with a total of 5.3 wt% of released hydrogen were observed for the 4MgH2Na3AlH6-10 wt% TiF3 composite. The re/dehydrogenation kinetics of 4MgH2Na3AlH6 system were significantly improved with the addition of TiF3. Kissinger analyses showed that the apparent activation energy, EA, of the 4MgH2Na3AlH6 doped composite was 124 kJ/mol, 16 kJ/mol and 34 kJ/mol lower for un-doped composite and the as-milled MgH2, respectively. It was believed that the enhancements of the MgH2Na3AlH6 hydrogen storage properties with the addition of TiF3 were due to formation of the NaF, the AlF3 and the Al3Ti species. These species may played a synergetic catalytic role in improving the hydrogenation properties of the MgH2Na3AlH6 system.  相似文献   

3.
Investigations on the catalytic effects of a non-reactive and stable additive, SrTiO3, on the hydrogen storage properties of the 4MgH2Na3AlH6 destabilized system were carried out for the first time. The Na3AlH6 compound and the destabilized systems used in the investigations are prepared using ball milling method. The doped system, 4MgH2Na3AlH6SrTiO3, had an initial dehydrogenation temperature of 145 °C, which 25 °C lower as compared to the un-doped system. The isothermal absorption and desorption capacity at 320 °C has increased by 1.2 wt% and 1.6 wt% with the addition of SrTiO3 as compared to the 4MgH2Na3AlH6 destabilized system. The decomposition activation energy of the doped system is estimated to be 117.1 kJ/mol. As for the XRD analyses at different decomposition stages, SrTiO3 is found to be stable and inert. In addition to SrTiO3, similar phases are found in the doped and the un-doped system during the decomposition and dehydrogenation processes. Therefore, the catalytic effect of the SrTiO3 is speculated owing to its ability to modify the physical structure of the 4MgH2Na3AlH6 particles through pulverization effect.  相似文献   

4.
Experimentally systematical comparisons are carried out in this work to clarify dehydrogenation steps of Mg-based hydrogen storage alloys during the overall desorption process. Different forms of MgH2CeH2.73 composite powders are prepared by high energy ball milling, partial dehydrogenation and annealing. For partially dehydrogenated samples, the desorption temperature and desorption activation energy decrease significantly considering the fact that primary-precipitated metal Mg phase on the surface of MgH2 can act as nucleate precursors. No significant difference in isothermal desorption kinetics is observed for MgH2CeH2.73 powders with different grain sizes. However, particle size reduction facilitates desorption at temperatures below 300 °C. As minor Ni is distributed on the surface, both onset and peak temperatures in thermal desorption decrease for MgH2CeH2.73 composite. The reduced activation energy by Ni addition is comparable to the value caused by partial dehydrogenation. Recombination of hydrogen atoms plays an important role during dehydrogenation. The obtains in this work can be expected to provide guidelines to improve desorption kinetics of Mg-based alloys.  相似文献   

5.
Ti-doping and Li-vacancy (VLi) crucially affect the dehydrogenation properties of LiBH4 surface. However, theoretical investigations on individual Ti or VLi could not completely explain experimental observations. In this article, we investigated the synergistic effects of co-existing Ti and VLi on the dehydrogenation properties of LiBH4 (010) surface. Our result shows mutual stabilization between Ti-dopant and Li-vacancy, implying expectable co-existence of Ti and VLi. Thermodynamic destabilization from composite Ti + VLi defect agrees with experiments better than that from single Ti or VLi. The kinetic barrier on Ti + VLi decorated surface also becomes closer to experimental result. Therefore, the co-existing Ti and VLi synergistically and crucially affect the dehydrogenation thermodynamics and kinetics on LiBH4 surface. The electronic structure further reveals strong HH, BB, and TiB bonds as well as weakened BH bond in transition states on Ti + VLi co-existed surface, which is the main factor of low kinetic barrier.  相似文献   

6.
In this report, Ni and TiO2 are successfully embedded into porous carbon aerogel (CA) (donated as NiTiO2@CA). Meanwhile, the synergistic effect of Ni, TiO2 and CA on the dehydrogenation properties of LiBH4 is systematically studied. Ni@CA, TiO2@CA and CA are also investigated for comparisons. Compared to other three materials, NiTiO2@CA exhibits better performance when used as a carrier to support LiBH4. More than 6.75 wt% H2 is released from LiBH4NiTiO2@CA system in nearly 120 min at 350 °C, exhibiting a higher dehydrogenation capacity than that of LiBH4Ni@CA (3.15 wt %), LiBH4TiO2@CA (5.15 wt%) and LiBH4-CA (2.05 wt %), respectively. Furthermore, the apparent energy (Ea) calculated with Kissinger method is 118.8 kJ/mol, much lower than that of pure LiBH4. Dehydrogenation performance of LiBH4NiTiO2@CA may be due to the synergetic effect of destabilization of TiO2, catalysis of Ni, as well as the nanoconfinement of CA.  相似文献   

7.
With the combination of experiment and first-principles theory, we have evaluated and explored the catalytic effects of graphitic nanofibres for hydrogen desorption behaviour in magnesium hydride. Helical form of graphene nanofibres (HGNF) have larger surface area, curved configuration and high density of graphene layers resulting in large quantity of exposed carbon sheet edges. Therefore they are found to considerably improve hydrogen desorption from MgH2 at lower temperatures compared to graphene (onset desorption temperature of MgH2 catalyzed by HGNF is 45 °C lower as compared to MgH2 catalyzed by graphene). Using density functional theory, we find that graphene sheet edges, both the zigzag and armchair type, can weaken MgH bonds in magnesium hydride. When the MgH2 is catalyzed with higher electronegative and reactive graphene edge of graphene, the electron transfer occurs from Mg to carbon, due to which MgH2 is dissociated into hydrogen and MgH component. The Mg gets bonded with the graphene edge carbon atoms in the form of CMgH and CH bonds. In the as formed CMgH, the graphene edges “grab” more electronic charge as compared to the normal charge donation of Mg to H. This leads to the weakening of the MgH bond, causing hydrogen to desorbs at lower temperatures.  相似文献   

8.
Mg(BH4)2 has been considered as one of the promising light metal complex hydrides due to its high hydrogen capacity and low cost. But its higher thermal stability (dehydrogenation at above 300 °C) needs to be improved for the practical application. In this study, the aluminum hydride AlH3 was introduced into complex borohydride Mg(BH4)2 to synthesize a new Mg(BH4)2AlH3 composite by ball milling method. It is found that the active Al1 formed from the self-decomposition of AlH3 can effectively improve the dehydrogenation properties of Mg(BH4)2, the Mg(BH4)2AlH3 composite starts to release hydrogen at 130.8 °C with a total hydrogen capacity of 11.9 wt.%. The dehydrogenated products of the composite is composed of Mg2Al3 and B at 350 °C, resulting in the improved hydrogen desorption properties of Mg(BH4)2AlH3 composite. The Mg2Al3 and B products would be further transformed into MgAlB4 and Al at 500 °C. Moreover, the Mg2Al3 and B dehydrogenated products show better reversible hydrogen storage property than that of the MgAlB4 and Al products. This research shows a way to alter hydrogen de/hydrogenation route and reversibility of Mg(BH4)2 complex hydride by compositing with AlH3 and controlling the dehydrogenation temperature.  相似文献   

9.
The hydrogen storage properties and reaction mechanism of the combined NaAlH4 + Ca(BH4)2 (2:1) composite system was investigated in the present study. Analyses show that after 6 h of milling, the NaAlH4 + Ca(BH4)2 combination fully converted to the mixture of Ca(AlH4)2 + NaBH4, and a metathesis reaction occurred between the hydrides. Four major dehydrogenation stages were observed in the system, which corresponds to the decomposition of Ca(AlH4)2, CaAlH5, CaH2 and NaBH4, respectively. The onset desorption temperature of the composite system is reduced to 125 °C, which is much lower than a unary component of NaAlH4 and Ca(BH4)2. The de/rehydrogenation kinetics of the composite system had improve at a higher temperature. From the Kissinger plot, the apparent activation energies for the decomposition of CaAlH5 and NaBH4 in the composite system were reduced to 142.9 and 146.5 kJ/mol, respectively. It is believed that the formation of AlCa, AlB and CaB alloys during the dehydrogenation process is responsible for the distinct reduction in the onset desorption temperature and kinetics enhancement of the 2NaAlH4 + Ca(BH4)2 composite system.  相似文献   

10.
Herein, a highly efficient and stable palladium nickel nanoparticles (PdNi NPs) supported on graphene oxide (GO) was synthesized, characterized and applied for the dehydrogenation of dimethyl ammonia borane (DMAB). The monodisperse PdNi NPs has been synthesized via the ultrasonic double solvent reduction method in the presence of oleylamine and GO as support matrices. The structure morphology and properties of PdNi@GO NPs were characterized by using different techniques such as UV–VIS, XPS, TEM, HRTEM and XRD methods. The PdNi@GO NPs was found to be highly effective and stable in the dehydrogenation of DMAB. This catalyst with the turnover frequency of 271.9 h?1 shows one of the best results among the all prepared catalysts in literature for the dehydrogenation of DMAB. The apparent activation parameters of the catalytic dehydrogenation reaction were also calculated; apparent activation energy (Ea,app) = 38 ± 2 kJ mol?1, activation enthalpy (ΔH#,app) = 35 ± 1 kJ mol?1 and activation entropy (ΔS#,app) = ?102 ± 1 J K?1 mol?1.  相似文献   

11.
In this paper, the hydrogen storage properties of the LiNH2LiH system doped with K2TiF6 were investigated and discussed. Interestingly, the hydrogen storage properties are significantly enhanced by introducing K2TiF6 into the LiNH2LiH system. By doping 5 mol% K2TiF6 in the LiNH2LiH system, we obtain the hydrogen desorption peak temperature (233 °C) at a heating rate of 10 °C min?1, which is approximately 66 °C lower than that of the pristine LiNH2LiH system. Moreover, the system begins to desorb H2 at 75 °C, which is approximately 124 °C lower than in the pristine LiNH2LiH system. The isothermal desorption kinetics at 250 °C and 300 °C clearly reflects the dramatically improved kinetic properties. Additionally, the reversibility of the LiNH2LiH system can be drastically enhanced by adding K2TiF6. We propose that the dehydrogenation property of the K2TiF6-doped LiNH2LiH sample is improved by the synergetic effects of K, Ti and F.  相似文献   

12.
In the present work, nanocrystalline Mg2Ni with an average size of 20–50 nm was prepared via ball milling of a 2MgH2Ni powder followed by compression under a pressure of 280 MPa. The phase component, microstructure, and hydrogen sorption properties were characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), pressure-composition-temperature (PCT) and synchronous thermal analyses (DSC/TG). Compared to the non-compressed 2MgH2Ni powder, the compressed 2MgH2Ni pellet shows lower dehydrogenation temperature (290 °C) and a single-phase Mg2Ni is obtained after hydrogen desorption. PCT measurements show that the nanocrystalline Mg2Ni obtained from dehydrogenated 2MgH2Ni pellet has a single step hydrogen absorption and desorption with fairly low absorption (?57.47 kJ/mol H2) and desorption (61.26 kJ/mol H2) enthalpies. It has very fast hydrogen absorption kinetics at 375 °C with about 3.44 wt% hydrogen absorbed in less than 5 min. The results gathered in this study show that ball milling followed by compression is an efficient method to produce Mg-based ternary hydrides.  相似文献   

13.
In this study, the effect of introduction of titania (TiO2) material into PtRu/C anode electrocatalyst on the performance of direct methanol fuel cells (DMFCs) was investigated. TiO2 materials were first synthesized applying a sol–gel method and then incorporated directly into commercial PtRu/C anode electrocatalyst with different TiO2 weight ratios (5, 15, and 25 wt.%) to improve the performance of the DMFC. For comparison, the anode electrocatalysts with the same TiO2 weight ratios were also prepared using commercial TiO2 materials. The performance tests of the DMFCs based on these composite anode electrocatalysts were conducted and their performances were also compared to that of a DMFC based on a traditional anode electrocatalyst (PtRu/C) under various operating conditions. In addition, 4 h short-term stability tests were conducted for all the manufactured DMFCs. The highest power densities were found as 705.12 W/m2 and 709.32 W/m2 at 80 °C and 1 M for the DMFCs based on PtRu/CTiO2 anode electrocatalysts containing 5 wt.% of commercial and in-house TiO2, respectively. The results of the short-term stability tests showed that introduction of 5 wt.% of commercial TiO2 into commercial PtRu/C anode electrocatalyst improved its stability characteristics significantly.  相似文献   

14.
The crystal structure of a photocatalyst generally plays a pivotal role in its electronic structure and catalytic properties. In this work, we synthesized a series of La/Cr co-doped perovskite compounds ATiO3 (M = Ca, Sr and Ba) via a hydrothermal method. Their optical properties and photocatalytic activities were systematically explored from the viewpoint of their dependence on structural variations, i.e. impact of bond length and bond angles. Our results show that although La/Cr co-doping helps to improve the visible light absorption and photocatalytic activity of these wide band gap semiconductors, their light absorbance and catalytic performance are strongly governed by the TiO bond length and TiOTi bond angle. A long TiO bond and deviation of TiOTi bond angle away from 180° deteriorate the visible light absorption and photocatalytic activity. The best photocatalytic activity belongs to Sr0.9La0.1Ti0.9Cr0.1O3 with an average hydrogen production rate ~2.88 μmol/h under visible light illumination (λ ≥ 400 nm), corresponding to apparent quantum efficiency ~ 0.07%. This study highlights an effective way in tailoring the light absorption and photocatalytic properties of perovskite compounds by modifying cations in the A site.  相似文献   

15.
Titanium suboxide (TiO) is one of the best catalysts which improved the hydrogen absorption-desorption property of MgH2 Mg system. The TiO catalyzed Mg MgH2 have shown a remarkably reduced apparent activation energy and enhanced the hydrogen absorption-desorption kinetics. The X-ray photoelectron spectroscopy (XPS) analysis has indicated that the oxidation state of Ti in TiO remains unchanged during ball milling and hydrogen absorption-desorption of TiO-doped-MgH2. The X-ray diffraction (XRD) analysis further confirms the XPS result. The TiO has shown the excellent catalytic effect on the MgMgH2 system which remarkably reduced the hydrogen absorption-desorption temperatures.  相似文献   

16.
LiBH4 can be destabilized by AlH3 addition. In this work, the hydrogen desorption kinetics of the destabilized LiBH4AlH3 composites were investigated. Isothermal hydrogen desorption studies show that the LiBH4 + 0.5AlH3 composite releases about 11.0 wt% of hydrogen at 450 °C for 6 h and behaves better kinetic properties than either the pure LiBH4 or the LiBH4 + 0.5Al composite. The apparent activation energy for the LiBH4 decomposition in the LiBH4 + 0.5AlH3 composite estimated by Kissinger's method is remarkably lowered to 122.0 kJ mol?1 compared with the pure LiBH4 (169.8 kJ mol?1). Besides, AlH3 also improves the reversibility of LiBH4 in the LiBH4 + 0.5AlH3 composite. For the LiBH4 + xAlH3 (x = 0.5, 1.0, 2.0) composites, the decomposition kinetics of LiBH4 are enhanced as the AlH3 content increases. The sample LiBH4 + 2.0AlH3 can release 82% of the hydrogen capacity of LiBH4 in 29 min at 450 °C, while only 67% is obtained for the LiBH4 + 0.5AlH3 composite in 110 min. Johnson?Mehl?Avrami (JMA) kinetic studies indicate that the reaction LiBH4 + Al → ‘LiAlB’ + AlB2 + H2 is controlled by the precipitation and subsequently growth of AlB2 and LiAlB compounds with an increasing nucleation rate.  相似文献   

17.
To clearly illustrate the activity effect of multi-walled carbon nanotubes (MWCNTs) and their functionality on anodic exoelectrogen in microbial fuel cells (MFCs), the growth of E. coli and anode biofilm on MWCNT-, MWCNTCOOH and MWCNTNH2 modified anodes were compared with a bare carbon cloth anode. The activity effect was characterized by the amount of colony-forming units (CFUs), activity biomass, morphology of biofilms and cyclic voltammetric (CV). The results showed that MWCNTs, MWCNT-COOH and MWCNT-NH2 exhibited good biocompatibility on exoelectrogenic bacteria. The performance of MFCs were improved through the introduction of MWCNT-modified anodes, especially in the presence of COOH/NH2 groups. The MFCs with the MWCNTCOOHmodified anode achieved a maximum power density of 560.40 mW/m2, which was 49% higher than that obtained with pure carbon cloth. In conclusion, the positive effects of MWCNTs and their functionality were evaluated for promoting biofilm formation, biodegradation and electron transfer on anodes. Specifically, the MWCNTCOOHmodified anode demonstrated the largest application potential for the development of MFCs.  相似文献   

18.
Vanadium-based alloys are considered to be one of the most promising hydrogen separation membranes due to their high hydrogen permeability. In this study, we investigate the dissolution and diffusion behaviors of hydrogen in vanadium-based binary alloys, V15M (where M = Al, Ti, Cr, Fe, Ni and Nb) alloys, using first-principles method based on density functional theory. The dissolution of hydrogen in V15M alloys is affected by both the elastic and electronic properties, but the elastic effect is the main factor. The H solution energies in the alloys follow the sequence: VTi < VNb < VAl < VCr < VNi < VFe, and a smaller atom size increase the H solution energy. Therefore, the addition of alloying elements with smaller atomic sizes can reduce the solubility of hydrogen in vanadium and inhibit hydrogen embrittlement. For hydrogen diffusion, alloying elements Al, Ti and Nb can be good candidates because they have a higher diffusion coefficient. The VTi alloy has the highest hydrogen permeability, but will have serious hydrogen embrittlement due to the increased H solubility.  相似文献   

19.
Trimetallic NiFeCo selenides (NiFeCoSex) anchored on carbon fiber cloth (CFC) as efficient electrocatalyst for oxygen evolution reaction (OER) in alkaline medium have been synthesized via a facile two-step method. Firstly, trimetallic NiFeCo (oxy) hydroxides have been electrodeposited on CFC support (NiFeCo/CFC). Secondly, a solvothermal selenization process has been used to convert NiFeCo/CFC into NiFeCoSex/CFC using N, N-dimethylformamide (DMF) as solvent. The composition and homogeneous distribution of NiFeCoSex/CFC nanoparticles are determined by XRD, XPS, SEM elemental mapping and EDX images. Furthermore, SEM images reveal that NiFeCoSex/CFC has volcano-shaped morphology with rough surface and homogenously distributed on the surface of CFC, which may provide more active sites for OER. The electrochemical measurements show that trimetallic NiFeCoSex/CFC possesses the better electrocatalytic activity with the lower overpotential (150 mV at 10 mA cm?2), Tafel slope (85 mV dec?1), larger double-layer capacitance (200 mF cm?2) and long-term stability than unary or binary metal selenides. The enhanced activity of NiFeCoSex/CFC may be attributed to the trimetallic NiFeCo selenides and selenides-CFC synergistic interaction. It may offer a promising way to design transition multimetallic selenides supported on conductive support as electrocatalysts for OER.  相似文献   

20.
AlGaInSn alloys were prepared by using traditional casting metallurgy method with different additions of Al5Ti1B grain refiner. Their microstructures were investigated by means of X-ray diffraction (XRD) and scanning electron microscope (SEM) with energy dispersed X-ray (EDX). The Al grains of alloys are refined significantly from 129 μm to 57 μm with increasing Ti content from 0.03 wt% to 0.24 wt%. Many thin dendrites that are a few micrometers thick are observed within Al grains.Al-water reactivities were performed under different water temperatures. The alloy with Ti content of 0.12 wt% shows the maximum H2 generation rate under different water temperatures, which is above 5 times of Ti-free alloy. The H2 yields of alloys drop from 87% to 30% with rising Ti content from 0.03 wt% to 0.24 wt% at the water temperature of 30 °C, but they rise to about 90% when the water temperature is above 50 °C.The growth mechanism of alloys and the effect of grain refinement on Al-water reactivities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号