首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The conversion of bio-oxygenates into hydrogen (H2) via catalytic steam reforming is a green approach for H2 generation. In the present work, butanol was chosen as renewable feedstock for producing H2. Two catalysts supported on multiwalled carbon nanotubes, Ni/CNT and Co/CNT, were synthesized by the wetness impregnation method and used for butanol reforming. Trials were performed in a fixed-bed reactor in the 623–773 K range using S/C ratio equal to 33.3 mol/mol (here, S/C denotes steam to carbon ratio). The Ni/CNT catalyst exhibited higher reforming activity. The best catalytic performance for Ni/CNT was observed at T = 773 K. At this temperature, high values of butanol conversion (87.3%) and H2 yield (0.75 mol/mol) were observed at W/FA0 = 16.7 g h/mol (here, W is the catalyst mass and FA0 is the molar flow rate of butanol at the inlet). The performance of Ni/CNT catalyst for steam reforming of synthetic bio-butanol was also investigated at T = 773 K and H2 yield of 0.65 mol/mol was achieved.  相似文献   

2.
Oil derived from fast pyrolysis of biomass (or bio-oil) is a candidate renewable feedstock for producing hydrogen (H2). In this work, the steam reforming of model oxygenates present in the bio-oil aqueous fraction was studied in a fixed-bed reactor. Using Ni/Al2O3 catalyst, the reactions with 2-butanone, 1-methoxy-2-propanol, ethyl acetate and butyraldehyde were studied. To study the efficacy of the chosen catalyst for H2 production, experiments were performed in the 623–773 K range using varying steam/carbon ratios in feed (15–25 mol/mol). The conversion of the various feeds was of the order: butyraldehyde > ethyl acetate > 1-methoxy-2-propanol > 2-butanone. The catalyst was characterized using SEM, XRD, TPR/TPD and TGA methods. It showed high stability for 7 h of time-on-stream.  相似文献   

3.
In the current study, steam reforming of ethylene glycol as a well-known bio-oxygenate, was carried out over 2%Pd–10%Ni/KIT-6 catalyst in a fixed-bed reactor. 2%Pd–10%Ni/KIT-6 was synthesized via surfactant-assisted impregnation method, whose physicochemical properties were determined by XRD, XRF, BET, FE-SEM, EDX-dot mapping, TEM, H2-TPR, NH3-TPD and TGA analyses. The performance of the synthesized catalyst was investigated at temperatures from 623 to 773 K and at 10 wt% of ethylene glycol in water. Furthermore, the Wcat/FEG0 ratio varied between 100.08 and 202.22 (g h mol?1). At T = 773 K and Wcat/FEG0 = 202.22, ethylene glycol conversion and H2 yield were 99.8% and 71.36%, respectively. Also, a stability test of 2%Pd–10%Ni/KIT-6 was conducted for 28 h. No significant change was shown in the catalytic activity. Some different models were used to describe the kinetic behavior. The power-law model indicated that the reaction order changed with temperature. The kinetic data were interpreted by the Langmuir-Hinshelwood models, in which the surface reaction between the adsorbed reactants was considered as a rate-determining step. The activation energy for the Langmuir-Hinshelwood and power-law models were 28.03 and 33.07 kJ mol?1, respectively. This synthesized nanocatalyst as the first Pd–Ni/zeolite in SREG through well-known kinetics and mechanism, is superior in high stability, excellent EG conversion, good yield and selectivity to H2 and less production of toxic products.  相似文献   

4.
The NaCo/ZnO catalyst was prepared by a co-precipitation method and the active phase for the catalyst was studied. Extended X-ray absorption fine structure (EXAFS) studies were used to obtain structural parameters of the active phase of the catalyst. In situ X-ray absorption near edge structure (XANES) studies were also employed to better understand the phase transition of the catalyst in the course of H2-temperature-programmed reduction followed by ethanol steam reforming. The XANES analysis confirmed that the oxidic precursor of Co3O4 phase was transformed to CoO followed by Co metal in the course of H2-TPR, and the Co metal phase remained stable during the reaction. The EXAFS analysis for the fresh and spent catalyst samples revealed that the characteristic features corresponding to Co–Co distance of Co metallic phase were being developed during reaction, which demonstrated that Co phase is most likely the active phase of NaCo/ZnO catalyst for the ethanol steam reforming. The catalytic activity in ethanol steam reforming for hydrogen production over the oxidized and reduced catalyst samples was measured at 773 K and 1 atm in a fixed bed reactor using a model liquid feed containing 21 vol% ethanol in water. The prereduced NaCo/ZnO catalyst gave high ethanol conversion of 99% with product distributions of 73.0% H2, 2.2% CO, 22.1% CO2, and 2.7% CH4, while the calcined oxidic one exhibited poor ethanol conversion below 44% at 773 K.  相似文献   

5.
Herein, a methane steam reforming (MSR) reaction was carried out using a Pd composite membrane reactor packed with a commercial Ru/Al2O3 catalyst under mild operating conditions, to produce hydrogen with CO2 capture. The Pd composite membrane was fabricated on a tubular stainless steel support by the electroless plating (ELP) method. The membrane exhibited a hydrogen permeance of 2.26 × 10?3 mol m2 s?1 Pa?0.5, H2/N2 selectivity of 145 at 773 K, and pressure difference of 20.3 kPa. The MSR reaction, which was carried out at steam to carbon ratio (S/C) = 3.0, gas hourly space velocity (GHSV) = 1700 h?1, and 773 K, showed that methane conversion increased with the pressure difference and reached 79.5% at ΔP = 506 kPa. This value was ~1.9 time higher than the equilibrium value at 773 K and 101 kPa. Comparing with the previous studies which introduced sweeping gas for low hydrogen partial pressure in the permeate stream, very high pressure difference (2500–2900 kPa) for increase of hydrogen recovery and very low GHSV (<150) for increase hydraulic retention time (HRT), our result was worthy of notice. The gas composition monitored during the long-term stability test showed that the permeate side was composed of 97.8 vol% H2, and the retentate side contained 67.8 vol% CO2 with 22.2 vol% CH4. When energy was recovered by CH4 combustion in the retentate streams, pre-combustion carbon capture was accomplished using the Pd-based composite membrane reactor.  相似文献   

6.
Tars should be removed from biomass gasification systems so as not to damage or clog downstream pipes or equipment. In this paper, lignite insoluble residue (LIR) after extraction of humic acids was used as the support to prepare a nickel-loaded LIR (Ni/LIR) catalyst. This novel catalyst Ni/LIR was tested in steam reforming of toluene as a model compound of biomass tar conducted in a laboratory-scale fixed bed reactor. When compared to the reactions without catalyst or with Ni/Al2O3, Ni/LIR was confirmed as an active catalyst for toluene conversion at a relatively low temperature of 900 K. The investigated reforming parameters during the experiments in this research were selected as reaction temperature at a range of 850–950 K, steam/carbon molar ratio at a range of 2–5 mol/mol, and a space velocity from 1696 to 3387 h?1. It was concluded that, under optimum conditions, significant amount of syngas yields, acceptable Ni/LIR consumption and more than 95% of toluene conversion can be obtained from the biomass Ni/LIR catalytic gasification system.  相似文献   

7.
The performance of a new Rh/CeSiO2 catalyst supported on a ceramic monolith for steam reforming (SR) of ethanol for hydrogen generation was investigated. It provides several advantages over a traditional pellet based catalyst in that it will reduce weight, size and pressure drop in the reactor. The effect of steam to ethanol molar ratio and temperature were first investigated on a powdered catalyst in order to establish the preferred reaction conditions to be used for tests on the monolith. The optimum temperature for coke free, high selectivity and stable catalyst operation was 1073 K at a steam to ethanol molar ratio of 3.5. The monolith supported catalyst was evaluated for aging stability, on/off performance and coke regeneration using steam gasification. After 96 h of SR of ethanol at 1028 K and water/ethanol molar ratio of 3.5 the monolith supported catalyst retained stable performance throughout the entire time on stream with the only products being H2, CO, CO2. Some coke formation was observed using Raman spectra, however, it did not cause any permanent deactivation. Regeneration via steam gasification at 973 K with 20% steam in N2 was successful for coke removal and complete catalyst regeneration.  相似文献   

8.
An original kinetic model has been proposed for the reforming of the volatiles derived from biomass fast pyrolysis over a commercial Ni/Al2O3 catalyst. The pyrolysis-reforming strategy consists of two in-line steps. The pyrolysis step is performed in a conical spouted bed reactor (CSBR) at 500 °C, and the catalytic steam reforming of the volatiles has been carried out in-line in a fluidized bed reactor. The reforming conditions are as follows: 600, 650 and 700 °C; catalyst mass, 0, 1.6, 3.1, 6.3, 9.4 and 12.5 g; steam/biomass ratio, 4, and; time on stream, up to 120 min. The integration of the kinetic equations has been carried out using a code developed in Matlab. The reaction scheme takes into account the individual steps of steam reforming of bio-oil oxygenated compounds, CH4 and C2-C4 hydrocarbons, and the WGS reaction. Moreover, a kinetic equation for deactivation has been derived, in which the bio-oil oxygenated compounds have been considered as the main coke precursors. The kinetic model allows quantifying the effect reforming conditions (temperature, catalyst mass and time on stream) have on product distribution.  相似文献   

9.
New CuOZnOxGa2O3–Al2O3 and CuOZnOxGa2O3–ZrO2 (CuZnxGaAl, CuZnxGaZr) catalysts with different Ga contents were prepared and tested in the methanol steam reforming reaction (MSR) under stoichiometric methanol/water = 1 mol ratio (S/C = 1) at 523 K and 548 K. Addition of Al2O3 or ZrO2 components increases the surface area and modifies the reducibility of CuOZnOGa2O3 catalysts; the CuZnxGaZr systems showed the highest reducibility. The performance of CuOZnOGa2O3-based catalysts for MSR is improved by the presence of ZrO2 promoter. CuZn3GaZr catalyst showed a high performance for MSR at 523 K and 548 K under stoichiometric conditions (S/C = 1). The catalyst resulted highly stable and selective for H2 production, with formation of less than 0.3% mol of CO at 523 K. CO is produced as a secondary by-product through the reverse water gas shift reaction. The new catalysts show high resistance to carbon formation at the temperatures analyzed under stoichiometric conditions (S/C = 1).  相似文献   

10.
In the present work acid‐treated Ni catalyst was investigated for the steam reforming (SR) of bio‐ethanol. Influential factors, such as reaction temperature, water‐to‐ethanol molar ratio and liquid hourly space velocity (LHSV), were investigated. The conversions were always complete at temperatures above 773 K, regardless of the changes of the reaction conditions. The yield to hydrogen increased with the increase in temperature and H2O/C2H5OH molar ratios. The hydrogen yield up to 84% was reached under conditions: 923 K, LHSV of 5.0 ml g−1 h−1, H2O/C2H5OH ratio of 10 over the acid‐treated Ni catalyst. The effects of the influential factors on the side reactions and the distribution of byproducts were discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Syngas can be effectively produced by mixed reforming of methane (MRM). In this work, the performance of Ni–K/CeO2–Al2O3 catalyst in this process was investigated in a fixed-bed reactor in the 923–1073 K range. Both potassium and ceria are renowned for improving the performance of Ni catalyst in the reforming process. The influence of reaction conditions (viz. temperature, space time, feed composition and time-on-stream) on the conversion of two reactants CH4 and CO2, yield of the products H2 and CO and the H2/CO ratio in syngas were studied. At T = 1073 K and W/Q0 = 0.17 g-h/L (here, W and Q0 denote catalyst mass and volumetric flow rate of feed), conversions of CH4 and CO2 were 91.2 and 80.1%. When S/C ratio (or steam-to-carbon ratio) in feed increased from 0.2 to 0.5 mol/mol, H2/CO ratio at T = 1073 K changed from 1.32 to 2.14 mol/mol. The catalyst performed stably for 50 h of time-on-stream. Reaction kinetics was studied between 973 and 1073 K and power law kinetic model was suggested. The apparent activation energy values for consumption of CH4 and CO2 were found to be 33.3 and 45.5 kJ/mol, respectively. This work is expected to aid catalyst development and reactor design for the MRM process.  相似文献   

12.
Catalytic steam reforming for producing high quality syngas from biomass fuel gas was studied over monolithic NiO/porous ceramic catalysts in a fixed-bed reactor. Effects of reaction temperature, steam to carbon (S/C) ratio, and nickel loading content on catalyst performance were investigated. Results indicated that the NiO/porous ceramic monolith catalyst had a good ability to improve bio-fuel gas quality. H2 yield, H2 + CO content, and H2/CO ratio in produced gas were increased when reaction temperature was increased from 550 to 700 °C. H2 yield was increased from 28.1% to 40.2% with S/C ratio increased from 1 to 2. And the yield of hydrogen was stabilized with the further increase of S/C ratio. Catalyst activity was not always enhanced with increased nickel content, when NiO loading content reaches 5.96%, serious aggregation and sintering of active composition on catalyst surface occur. The best performance, in terms of H2 yield, is obtained with 2.50% NiO content at reaction temperature of 700 °C and S/C ratio of 2.  相似文献   

13.
This study reports the influence of biogas poisoning on a Ni based catalyst working under steam reforming conditions (atmospheric pressure, T = 1073 K and H2O/CH4 = 2 mol/mol). A biogas stream composed by CH4 and CO2 with a ratio 55/45 vol.%, added with different chemical species (H2S, hydrocarbons mixture and D5) as contaminants, was used as inlet gas stream.First, effect of poisoning on Ni catalyst were separately evaluated and the boundary concentrations for each contaminants were revealed (0.4 ppm, 200 ppm and 0.5 ppm for H2S, hydrocarbons and D5 respectively) to assure Ni stable performances on time on stream (100 h at 50,000 h?1 of GHSV). Successively, a comparison between Ni catalytic behaviors in presence of two combined poisoning in the biogas (H2S + Hydrocarbons and Hydrocarbons + D5) was carried out.It was found that the effect of combined poisoning, even though it considered in moderate concentration, is harmful for Ni catalyst activity. Methane conversion on time on stream was reduced from 86% to 40% after 50 h, when the couple of poisoning Hydrocarbons + D5 was added to the inlet gas stream, while a lower deactivation pattern (about 73%) was leaded by couple H2S + Hydrocarbons. Both poisoning mixtures promoted coke deposition on Ni catalyst surface (about ≥0.5 mgC/gcat·h) independently by poisoning chemical characteristics probably due to adsorption/deposition of contaminants on catalytic sites.  相似文献   

14.
The thermodynamic equilibrium of steam reforming of propionic acid (HPAc) as a bio-oil model compound was studied over a wide range of reaction conditions (T = 500–900 °C, P = 1–10 bar and H2O/HPAc = 0–4 mol/mol) using non-stoichiometric equilibrium models. The effect of operating conditions on equilibrium conversion, product composition and coke formation was studied. The equilibrium calculations indicate nearly complete conversion of propionic acid under these conditions. Additionally, carbon and methane formation are unfavorable at high temperatures and high steam to carbon (S/C) ratios. The hydrogen yield versus S/C ratio passes a maximum, the value and position of which depends on temperature. The thermodynamic equilibrium results for HPAc fit favorably with experimental data for real bio-oil steam reforming under same reaction conditions.  相似文献   

15.
Multi-functional hybrid materials are attractive for producing high-purity hydrogen (H2) via catalytic steam reforming coupled with low temperature adsorptive separation of CO2. In this work, modified Ni/hydrotalcite-like (HTlc) hybrid materials promoted with Ce and Zr species were synthesized and applied for the sorption-enhanced steam methane reforming process (or SESMR). The promotion with Ce and Zr resulted in strongly basic sites for CO2 adsorption, and hence, improved H2 production. Especially, the Ce-promoted hybrid material (Ce-HM1) exhibited the highest adsorption capacity (1.41 mol CO2/kg sorbent), producing 97.1 mol% H2 at T = 723 K, P = 0.1 MPa, S/C = 4.5 mol/mol and gas hourly space velocity or GHSV = 3600 mL/(g h); the breakthrough time was 1 h. High surface area and basicity of the promoted materials inhibited coke formation and undesired reactions. In addition to the improved catalytic activity and adsorption characteristics, these materials were stable and easily regenerable. Multi-cycle durability tests revealed that both the promoted materials Ce-HM1 and Zr-HM1 remained stable for up to 13 and 17 cycles. In contrast, the unpromoted hybrid material (HM1) was stable for 9 cycles only. Thus, promotion with Ce and Zr was beneficial for producing pure H2.  相似文献   

16.
Ethanol steam reforming in membrane reactors is a promising route for decentralized H2 production from biomass because H2 yield can be greatly enhanced due to the equilibrium shift triggered by instantaneous H2 extraction. Here a highly active Ir/CeO2 catalyst has been combined with ca. 4 μm thin Pd membranes employing a 6:1 steam/ethanol feed between 673 K and 873 K at reforming pressures up to 1.8 MPa. The H2 yield reached 94.5% at 873 K and 1300 kPa due to the separation of 91.8% H2 whereas H2 yield was limited to 28.9% without membrane. At lower temperatures and pressures sweep gas was needed at the membranes' permeate side for efficient H2 generation since the H2 partial pressure remains equilibrium-limited on the reaction side. Furthermore, the H2 yield improved from 63.0% to 84.7% at 773 K, 1500 kPa and sweep-to-feed flow ratio 0.5 when the distance between membrane and reactor wall was shortened by ca. 30%. Thus, external H2 diffusion towards the membrane has a large impact on membrane reactor performance pointing towards microstructured membrane reactors as optimum devices for sustainable H2 production from biomass.  相似文献   

17.
Thermodynamic equilibrium for sorption enhanced steam reforming of butanol (SESRB) to hydrogen was investigated using Gibbs free energy minimization method. The optimal operation conditions for SESRB are at 800 K, the steam-to-butanol molar ratio of 10, the calcium oxide-to-butanol molar ratio of 8 and atmospheric pressure. Under the optimal conditions, complete conversion of butanol, 97.07% concentration of H2 and 0.05% concentration of CO2, and efficiency of 86.60% could be achieved and at which no coke tends to form. Under the same conditions in SRB, 58.18% concentration of H2, 21.62% concentration of CO2, and energy efficiency of 81.51% could be achieved. Butanol steam reforming with CO2 adsorption has the higher H2 content and efficiency, and lower CO2 content than that without adsorption under the same reaction conditions. In addition, reaction conditions for coke-free and coke-formed regions are also discussed in butanol steam reforming with or without CO2 separation.  相似文献   

18.
A systematic study focused on the aqueous-phase reforming of glycerol has been carried out in order to analyze the influence of several operating variables (system pressure, reaction temperature, glycerol content in feed, liquid feeding rate and catalyst weight/glycerol flow rate ratio) on the gas and liquid products. A continuous flow bench scale installation and a Ni/Al coprecipitated catalyst were employed. The system pressure was varied from 28 to 40 absolute bar, the reaction temperature was analyzed from 495 to 510 K, the glycerol content in the feed was studied from 2 to 10 wt%, the liquid feeding rate was changed from 0.5 to 3.0 mL/min and the catalyst weight/glycerol flow rate ratio varied from 10 to 40 g catalyst min/g glycerol. The main gas products obtained were H2, CO2 and CH4, while the main liquid products were 1,2-propanediol, ethylene glycol, acetol and ethanol. A W/mglycerol ratio of 40 g catalyst min/g glycerol, 34 bar, 500 K, 5 wt% glycerol and 1 mL/min, resulted in a high yield to H2 (6.8%), the highest yield to alkanes (10.7%), the highest 1,2-propanediol yield (0.20 g/g glycerol) and the highest ethylene glycol yield (0.11 g/g glycerol). The highest acetol yield (0.06 g/g glycerol) was obtained at 34 bar, 500 K, 5 wt% glycerol, 20 g catalyst min/g glycerol and 3 mL/min.  相似文献   

19.
An auxiliary power unit based on a solid oxidation fuel cell for heavy-duty vehicles has been receiving attention for high efficiency, low emissions, and more comfort and safety in vehicles. This study explores hydrogen-rich syngas production via reforming of a mixture of aqueous urea and biodiesel by thermodynamics analysis. The aqueous urea is available from Adblue used in a selective catalyst reduction providing efficient control of nitrogen oxides from heavy-duty vehicles to minimize particulate mass and optimize fuel consumption. The results show that at a reaction temperature of 700 °C, urea/biodiesel ratio = 3, and oxygen/biodiesel ratio = 9, the highest reforming efficiency is 83.78%, H2 production 30.43 mol, and CO production 12.68 mol. This study verified that aqueous urea could successfully replace the steam in autothermal reforming, which provides heat and increases syngas production, and reforming aqueous urea mixed with biodiesel has ultra-low sulfur, low carbon and little modifying the fuel system.  相似文献   

20.
In this work, ZrO2 was employed as support and as Al2O3 modifier of Ni based catalysts due to its special interesting characteristics. The catalytic activity of these systems was studied in steam reforming of glycerol to produce H2. As the activity results at 773 K and 873 K showed, the NiZ catalyst allowed low glycerol conversion and H2 production when compared to the NiγA catalyst. Moreover, the NiZ catalyst was not able to reform intermediate liquid products into gaseous products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号