首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— To estimate the qualified viewing spaces for two‐ and multi‐view autostereoscopic displays, the relationship between image quality (image comfort, annoying ghost image, depth perception) and various pairings between 3‐D cross‐talk in the left and right views are studied subjectively using a two‐view autostereoscopic display and test charts for the left and right views with ghost images due to artificial 3‐D cross‐talk. The artificial 3‐D cross‐talk was tuned to simulate the view in the intermediate zone of the viewing spaces. It was shown that the stereoscopic images on a two‐view autostereoscopic display cause discomfort when they are observed by the eye in the intermediate zone between the viewing spaces. This is because the ghost image due to large 3‐D cross‐talk in the intermediate zone elicits different depth perception from the depth induced by the original images for the left and right views, so the observer's depth perception is confused. Image comfort is also shown to be better for multi‐views, especially the width of the viewing space, which is narrower than the interpupillary distance, where the parallax of the cross‐talking image is small.  相似文献   

2.
Abstract— An integral imaging time‐division‐multiplexing 18‐view 3‐D display based on the one‐dimensional integral‐imaging (1‐D‐II) technique using a 9‐in. OCB‐LCD, lenticular sheet, and active shutter has been developed. By simulating a lens shape and a shutter structure and analyzing the light‐beam profile of the increasing‐parallax‐number region to find the best conditions, depth range, and viewing angle were an enhanced and a brighter and flicker‐less 3‐D image with smooth motion parallax was obtained.  相似文献   

3.
Abstract— This study develops an autostereoscopic display based on a multiple miniature projector array to provide a scalable solution for a high‐resolution 3‐D display with large viewing freedom. To minimize distortion and dispersion, and to maximize the modulation transfer function (MTF) of the projection image to optimize 3‐D image quality, a dedicated projection lens and an accurate six‐axis adjusting platform for the miniature projector were designed and fabricated. Image‐blending technology based on a lookup table was adopted to combine images from 30 miniature projectors into a seamless single image. The result was a 35‐in. autostereoscopic display with 60 views ata 30° viewing angle, 90° FOV, and large range of viewing distance. The proposed system exhibits very smooth motion parallax when viewers move around in front of it.  相似文献   

4.
Abstract— A 42‐in. 2‐D/3‐D switchable display operating in a parallax‐barrier‐type system consisting of liquid‐crystal displays (LCDs) has been developed. The system displays 2‐D images in full resolution, without any degradation to the original 2‐D images, and 3‐D autostereoscopic images with resolutions higher than SVGA with wide viewing zones electrically controlled by the parallax‐barrier system. The system is intended for use in public‐information displays (PIDs), a booming field, and as displays for gaming, medical, and simulation applications.  相似文献   

5.
Abstract— The wide‐viewing freedom often requested by users of autostereoscopic displays can be delivered by spatial multiplexing of multiple views in which a sequence of images is directed into respective directions by a suitable autostereoscopic optical system. This gives rise to two important design considerations — the optical efficiency and the resolution efficiency of the device. Optical efficiency is particularly important in portable devices such as cell phones. A comparison is given between lens and barrier systems for various spatial multiplexing arrangements. Parallax‐barrier displays suffer from reduced optical efficiency as the number of views presented increases whereas throughput efficiency is independent of the number of views for lens displays. An autostereoscopic optical system is presented for the emerging class of highly efficient polarizer‐free displays. Resolution efficiency can be evaluated by investigating quantitative and subjective comparisons of resolution losses and pixel appearance in each 3‐D image. Specifically, 2.2‐in.‐diagonal 2‐D/3‐D panel performance has been assessed using Nyquist boundaries, human‐visual contrast‐sensitivity models, and autostereoscopic‐display optical output simulations. Four‐view vertical Polarization‐Activated Microlens technology with either QVGA mosaic or VGA striped pixel arrangements is a strong candidate for an optimum compromise between display brightness, viewing angle, and 3‐D pixel appearance.  相似文献   

6.
A simple and high image quality method for viewpoint image synthesis from multi‐camera images for a stereoscopic 3D display using head tracking is proposed. In this method, slices of images for depth layers are made using approximate depth information, the slices are linearly blended corresponding to the distance between the viewpoint and cameras at each layer, and the layers are overlaid from the perspective of viewpoint. Because the linear blending automatically compensates for depth error because of the visual effects of depth‐fused 3D (DFD), the resulting image is natural to observer's perception. Smooth motion parallax of wide depth range objects induced by viewpoint movement for left‐and‐right and front‐and‐back directions is achieved using multi‐camera images and approximate depth information. Because the calculation algorithm is very simple, it is suitable for real time 3D display applications.  相似文献   

7.
A 4.4‐inch 2D/3D switchable full high definition (FHD) six‐view 3D display with 3D resolution greater than 170 ppi has been accomplished. In addition to adopting low temperature polysilicon technology (LTPS), which is most suitable for high resolution displays, a new RGBW pixel arrangement using four‐square sub‐pixels has been devised. In 2D, a resolution greater than 500 ppi, accompanied with high luminance, has been achieved. A new liquid crystal lens (LCL) has been exploited for 2D/3D switching. By employing a special multielectrode structure and dedicated manufacturing process, an optical focal ratio less than 20%, which is essential for low 3D cross talk for a six‐view 3D display, has been attained by adopting the LCL. In the vertical direction of the display, there is no cross talk increase when the viewing position is changed because of the new pixel structure. The strong focal strength of the LCL combined with a revised high‐density multi‐view design give rise to a wide 3D viewing angle greater than 20 degrees in the horizontal direction and minimum cross talk less than 10%.  相似文献   

8.
Dual layered display or also called tensor display that consists of two panels in a stack can present full‐parallax 3D images with high resolution and continuous motion parallax by reconstructing corresponding light ray field within a viewing angle. The depth range where the 3D images can be displayed with reasonable resolution, however, is limited around the panel stack. In this paper, we propose a dual layered display that can present stereoscopic images to multiple viewers located at arbitrary positions in observer space with high resolution and large depth range. Combined with the viewer tracking system, the proposed method provides a practical way to realize high‐resolution large‐depth auto‐stereoscopic 3D display for multiple observers without restriction on the observer position and the head orientation.  相似文献   

9.
Abstract— Although two‐view 3‐D displays requiring stereo glasses are on the market, the shape of objects they present is distorted when the observer's head moves. This problem can be solved by using a (passive) multi‐view 3‐D display because such a display can produce motion parallax. Another problem has to do with the surface quality of the presented object, but little is known about the fidelity of such displays as far as the surface quality goes. Previously, it was found that a two‐view 3‐D display has a problem in which glossiness deteriorates when the observer's head moves and that it can be alleviated by using a head tracker, whose data enables the display to produce correct motion parallax and luminance changes when the viewer's head moves. Here, it was determined whether this problem can be solved by using commercially available multi‐view 3‐D displays, whose finite number of viewpoints and certain amount of cross‐talk, however, make luminance changes inexact and smaller than they should be. It was found that this display can solve the problem to a certain extent.  相似文献   

10.
Abstract— Autostereoscopic and polarization‐based stereoscopic 3‐D displays recreate 3‐D images by providing different images in the two eyes of an observer. This aim is achieved differently for these two families of 3‐D displays. It is shown that viewing‐angle measurements can be applied to characterize both types of displays. Viewing‐angle luminance measurements are made at different locations on the display surface for each view emitted by the display. For autostereoscopic displays, a Fourier‐optics instrument with an ultra‐high‐angular‐resolution VCMaster3D is used. For polarization‐based displays, a standard Fourier‐optics instrument with additional glass filters is used. Then, what will be seen by an observer in front of the display is computed. Monocular and binocular quality criteria (left‐ and right‐eye contrast, 3‐D contrast) was used to quantify the ability to perceive depth for any observer position. Qualified monocular and binocular viewing spaces (QMVS and QBVS) are deduced. Precise 3‐D characteristics are derived such as maximum 3‐D contrast, optical viewing freedom in each direction, color shifts, and standard contrast. A quantitative comparison between displays of all types becomes possible.  相似文献   

11.
A conflict between accommodation and vergence is one possible cause of visual fatigue and discomfort while viewing conventional three‐dimensional displays. Previous studies have proposed the super multi‐view (SMV) display technique to solve the vergence–accommodation conflict, in which two or more parallax images enter the pupil of the eye with highly directional rays. We simultaneously measured accommodative, vergence, and pupillary responses to SMV three‐dimensional displays to examine whether they can reduce the conflict. For comparison, responses to two‐view stereo images and real objects were also measured. The results show that the range of the accommodative response was increased by the SMV images compared with the two‐view images. The slope of the accommodation–vergence response function for the SMV images was similar to that for the real objects rather than the two‐view images. We also found that enhancement of the accommodative range by the SMV images is noticeable with binocular viewing, indicating that vergence‐induced accommodation plays an important role in viewing SMV displays. These results suggest that SMV displays induced a more natural accommodative response than did conventional, two‐view stereo displays. As a result, SMV displays reduced the vergence–accommodation conflict.  相似文献   

12.
Abstract— Display‐measurement methods different from conventional 2‐D display measurements are needed for verifying the optical characteristics of autostereoscopic (3‐D) displays and for comparing different 3‐D display technologies. Industry is lacking standardized measurement methods, and the reported results can not always be compared. The selected set of characteristics discussed in this paper and partly defining the quality of the 3‐D experience are crosstalk, viewing freedom, and optimum viewing distance. Also, more conventional display characteristics such as luminance are discussed, since the definitions for these characteristics in 3‐D mode usually differ from those used for the 2D displays. We have investigated how these chosen 3‐D display characteristics can be objectively measured from transmissive two‐view and multiview 3‐D displays. The scope of this article is to generally define those basic characteristics as well as the different measurement methods. Most of the 3‐D characteristics can be derived from the luminance and colors versus the viewing angle. Either a conoscopic or a goniometric measurement system can be used, as long as the angular and stray‐light properties are suitable and known. The characteristics and methods are currently discussed in the display‐quality standardization forums.  相似文献   

13.
Abstract— A depth‐map estimation method, which converts two‐dimensional images into three‐dimensional (3‐D) images for multi‐view autostereoscopic 3‐D displays, is presented. The proposed method utilizes the Scale Invariant Feature Transform (SIFT) matching algorithm to create the sparse depth map. The image boundaries are labeled by using the Sobel operator. A dense depth map is obtained by using the Zero‐Mean Normalized Cross‐Correlation (ZNCC) propagation matching method, which is constrained by the labeled boundaries. Finally, by using depth rendering, the parallax images are generated and synthesized into a stereoscopic image for multi‐view autostereoscopic 3‐D displays. Experimental results show that this scheme achieves good performances on both parallax image generation and multi‐view autostereoscopic 3‐D displays.  相似文献   

14.
Abstract— A flat‐panel display with a slanted subpixel arrangement has been developed for a multi‐view three‐dimensional (3‐D) display. A set of 3M × N subpixels (M × N subpixels for each R, G, and B color) corresponds to one of the cylindrical lenses, which constitutes a lenticular lens, to construct each 3‐D pixel of a multi‐view display that offers M × N views. Subpixels of the same color in each 3‐D pixel have different horizontal positions, and the R, G, and B subpixels are repeated in the horizontal direction. In addition, the ray‐emitting areas of the subpixels within a 3‐D pixel are continuous in the horizontal direction for each color. One of the vertical edges of each subpixel has the same horizontal position as the opposite vertical edge of another subpixel of the same color. Cross‐talk among viewing zones is theoretically zero. This structure is suitable for providing a large number of views. A liquid‐crystal panel having this slanted subpixel arrangement was fabricated to construct a mobile 3‐D display with 16 views and a 3‐D resolution of 256 × 192. A 3‐D pixel is comprised of 12 × 4 subpixels (M = 4 and N = 4). The screen size was 2.57 in.  相似文献   

15.
Abstract— An improved 3‐D/2‐D switchable display system with enhanced depth and viewing angle by adding two LCD panels to an integral imaging system has been realized. The proposed system uses the see‐through property of an LCD panel and displays multiple sets of elemental images on the LCD panels to integrate them on multiple locations simultaneously. As a result, the depth of the 3‐D image can be enhanced. For wide viewing angles, the time‐multiplexing method was adopted by displaying mask patterns on the front LCD panel. In addition, another technique to increase the contrast ratio of the proposed system has also been developed. Some experimental results will be provided.  相似文献   

16.
Abstract— The viewing freedom of the reduced‐view super multi‐view (SMV) display was analyzed. It was found that there are separate multiple viewing ranges in the depth direction; thus, a technique that selects an appropriate viewing range to increase the longitudinal viewing freedom has been developed. Pixels of a flat‐panel display viewed by the viewer's eyes through a lenticular lens were determined from three‐dimensional (3‐D) positions of the viewer's eyes, which were obtained using an eye‐tracking system that employed a stereo camera. Parallax images corresponding to the 3‐D positions of the viewer's eyes were generated, which were displayed by the determined pixels. The experimental results show that the proposed technique successfully increased the longitudinal viewing freedom. It is also shown that a video camera was able to focus on the produced SMV images.  相似文献   

17.
Abstract— In this paper, the design of a lenticular‐based 2‐D/3‐D display for mobile applications is described. This display combines look‐around capability with good 3‐D resolution. In order to allow high‐resolution datagraphic applications, a concept based on actively switched lenses has been developed. A very noticeable problem for such displays is the occurrence of dark bands. Despite slanting the lenticular and defocusing the lens, banding becomes unacceptable when the display is viewed from an angle. As a solution, fractional viewing systems to reduce the banding intensity by almost two orders of magnitude is introduced. The resulting 3‐D display can be viewed from any horizontal direction without banding.  相似文献   

18.
Abstract— An autostereoscopic display based on dual‐directional light guides with a fast‐switching liquid‐crystal panel was designed and fabricated to provide better 3‐D perception with image qualities comparable to that of 2‐D displays. With two identical micro‐grooved light guides, each with a light‐controlled ability in one direction, two restricted viewing cones are formed to project pairs of parallax images to the viewer's respective eyes sequentially. Crosstalk of less than 10% located within ±8°–±30° and an LC response time of 7.1 msec for a 1.8‐in. LCD panel can yield acceptable 3‐D perceptions at viewing distance of 5.6–23 cm. Moreover, 2‐D/3‐D compatibility is provided in this module.  相似文献   

19.
Abstract— A circular camera system employing an image‐based rendering technique that captures light‐ray data needed for reconstructing three‐dimensional (3‐D) images by using reconstruction of parallax rays from multiple images captured from multiple viewpoints around a real object in order to display a 3‐D image of a real object that can be observed from multiple surrounding viewing points on a 3‐D display is proposed. An interpolation algorithm that is effective in reducing the number of component cameras in the system is also proposed. The interpolation and experimental results which were performed on our previously proposed 3‐D display system based on the reconstruction of parallax rays will be described. When the radius of the proposed circular camera array was 1100 mm, the central angle of the camera array was 40°, and the radius of a real 3‐D object was between 60 and 100 mm, the proposed camera system, consisting of 14 cameras, could obtain sufficient 3‐D light‐ray data to reconstruct 3‐D images on the 3‐D display.  相似文献   

20.
Abstract— The observers' 3‐D viewing experience when the way the content is created and shown on an autostereoscopic 3‐D display alternate is evaluated. The observer's depth impression, and the perceived contour accuracy and image naturalness or peskiness of the content shown on a 3‐D display, has been investigated. In addition, the consequences of the way the content is created to the results from the optical characterization for the same display have been studied. The alternation of the content was realized in two different ways. Firstly, the number of views for creating the image was varied. Two, five, and 14 views were used; the main focus being on testing the same display and treating it as an ordinary two‐view and a 14‐view display with inter‐sub‐view crosstalk. Also, the intermediate condition where five views with non‐uniform view‐specific crosstalk were used has been investigated. Secondly, the way the content is created was varied by using images with computer‐generated content and photos. The effect of these parameters on viewing experience as such and especially the effect of 3‐D crosstalk on the viewing experience were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号