首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotary engine generally sustains poor fuel economy and emissions performance at idle condition. Hydrogen has excellent physicochemical properties that can serve as an enhancer to improve the performance of the original engine. In this paper, a modified rotary engine equipped with dual fuel (hydrogen and n-butanol) port injection system and electronic ignition module was developed to explore the influence of hydrogen supplement on enhancing the idle performance of n-butanol rotary engine. In this study, the engine was run at the idle and stoichiometric with the original spark timing. Hydrogen volume percentage in the total intake was gradually increased from 0% to 7.9% by adjusting the fuel flow rate of n-butanol. The experimental results indicated that the engine instability and fuel energy flow rate were both reduced by enlarging the hydrogen supplying level. Combustion periods were shortened thanks to the enrichment of hydrogen. The peak chamber temperature was heightened as hydrogen fraction increased due to the improved combustion. HC and CO emissions were severally reduced by 50.4% and 85.8% when the hydrogen volume percentage was raised from 0% to 7.9%. However, NOx emissions were mildly increased because of the raised chamber temperature by increasing hydrogen fraction.  相似文献   

2.
The comparative study on performance of the hydrogen/gasoline and hydrogen/n-butanol rotary engines was conducted in the present paper. Considering the stable operation of the engine, for both hydrogen/gasoline case and hydrogen/n-butanol case, the operating conditions were set at: 4000 rpm (engine speed), 35 kPa (intake pressure) and 30 °CA BTDC (spark timing). The total excess air ratio of mixture was maintained at 1.0 through all the tests. The testing results displayed that hydrogen enrichment improved performance of both gasoline and n-butanol rotary engines. To be more specific, brake thermal efficiency was increased, flame development and propagation periods were shortened, the coefficient of variation in flame propagation period was decreased, and the emissions of HC and CO were decreased. NOx emissions were mildly increased after hydrogen addition. Besides, hydrogen/n-butanol rotary engine possessed the similar performance to hydrogen/gasoline rotary engine.  相似文献   

3.
Because of the limit of properties of gasoline and irregular design of chamber, the pure gasoline rotary engine generally encounters partial burning, increased noxious emissions or even misfire at lean conditions. This situation could be deteriorated at idle because of the high variation in the intake charge and low combustion temperature. Hydrogen addition is proved to remit the deterioration of performance of sparked-ignited (SI) engines at idle and lean conditions. This paper conducted an experiment on a modified rotary engine equipped with gasoline and hydrogen port-injection systems to explore the performance of a hydrogen–gasoline rotary engine (HGRE) at idle and lean conditions. An electronic management unit (EMU) was invented to manage spark and fuel injection. Excess air ratio (λ) and hydrogen volumetric fraction in the total intake (αH2) were also governed through the EMU. For this study, the HGRE was operating at idle and αH2 was kept at 0% and 3%, respectively. For a specific αH2, gasoline flow rate was reduced to make the HGRE run at desired λ. Results indicated that engine fluctuation and fuel energy flow rate were both decreased after hydrogen addition. Combustion duration was cut down and central heat release point was advanced after hydrogen addition. Peak chamber temperature (Tmax), pressure and heat release were enhanced after hydrogen blending. HC, CO and CO2 emissions were simultaneously reduced because of hydrogen enrichment. Specifically, at λ = 1.00, HC, CO and CO2 emissions were respectively reduced from 42,411 to 26,316 ppm, 1.86 to 0.78% and 9.96 to 8.58% when 3% hydrogen was added.  相似文献   

4.
The n-butanol fuel, as a renewable and clean biofuel, could ease the energy crisis and decrease the harmful emissions. As another clean and renewable energy, hydrogen properly offset the high HC emissions and the insufficient of dynamic property of pure n-butanol fuel in SI engines, because of the high diffusion coefficient, high adiabatic flame velocity and low heat value. Hydrogen direct injection not only avoids backfire and lower intake efficiency but also promotes to form in-cylinder stratified mixture, which is helpful to enhance combustion and reduce emissions. This experimental study focused on the combustion and emissions characteristics of a hydrogen direct injection stratified n-butanol engine. Three different hydrogen addition fractions (0%, 2.5%, 5%) were used under five different spark timing (10° ,15° ,20° ,25° ,30° CA BTDC). Engine speed and excess air ratio stabled at 1500 rpm and 1.2 respectively. The direct injection timing of the hydrogen was optimized to form a beter stratified mixture. The obtained results demonstrated that brake power and brake thermal efficiency are increased by addition hydrogen directly injected. The BSFC is decreased with the addition of hydrogen. The peak cylinder pressure and the instantaneous heat release rate raises with the increase of the hydrogen addition fraction. In addition, the HC and CO emissions drop while the NOx emissions sharply rise with the addition of hydrogen. As a whole, with hydrogen direct injection, the power and fuel economy performance of n-butanol engine are markedly improved, harmful emissions are partly decreased.  相似文献   

5.
In the present paper, the cyclic variations of a hydrogen-blended gasoline rotary engine operated under various conditions were experimentally investigated. The experiments were carried out on a modified hydrogen-gasoline dual-fuel rotary engine equipped with an electronically-controlled fuel injection system. An electronic control module was specially made to command the fuel injection, excess air ratio and hydrogen volumetric fraction. The tested engine was first run at idle condition with a speed of 2400 rpm and then operated at 4500 rpm to investigate the cyclic variations of a hydrogen-enriched gasoline rotary engine under different hydrogen volumetric percentages in the total intake, excess air ratios and spark timings. The experimental results demonstrated that the coefficient of variations (in peak pressure, engine speed, flame development period and flame propagation period) of the gasoline rotary engine were distinctly decreased with the increase of hydrogen volume fraction under all the tested conditions. In particular, at idle and stoichiometric conditions, the coefficient of variation in CA0-10 and CA10-90 were reduced from 9.25% to 5.01%, 15.40% to 8.70%, respectively.  相似文献   

6.
The effects of hydrogen on the combustion characteristics, thermal efficiency, and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation (EGR) were investigated experimentally at brake mean effective pressures of 4, 6, and 8 bar at 2000 rpm. Four cases of hydrogen energy fraction (0%, 1%, 3% and 5%) of total fuel energy were studied. Hydrogen energy fraction of total fuel energy was hydrogen energy in the sum of energy of consumed gasoline and added hydrogen. The test results demonstrated that hydrogen addition improved the combustion speed and reduced cycle-to-cycle variation. In particular, cylinder-to-cylinder variation dramatically decreased with hydrogen addition at high EGR rates. This suggests that the operable EGR rate can be widened for a turbo gasoline direct-injection engine. The improved combustion and wider operable EGR rate resulted in enhanced thermal efficiency. However, the turbocharging effect acted in opposition to the thermal efficiency with respect to the EGR rate. Therefore, a different strategy to improve the thermal efficiency with EGR was required for the turbo gasoline direct-injection engine. HC and CO2 emissions were reduced but NOX emissions increased with hydrogen addition. The CO emissions as a function of engine load followed different trends that depended on the level of hydrogen addition.  相似文献   

7.
Idle performance of a hydrogen rotary engine at different excess air ratios   总被引:1,自引:0,他引:1  
Rotary engine has flat chamber and longs for fuel with high flame speed and small quenching distance. Hydrogen has many excellent characteristics that are suitable for the rotary engine. In this paper, the performance of a rotary engine fueled with pure hydrogen at different excess air ratios was experimentally investigated. The investigation was carried out on a single-rotor hydrogen-fueled rotary engine equipped with port fuel injection system. An online electronic control module was used to govern the hydrogen injection duration and excess air ratio. In this study, the engine was operating at the idle speed of 3000 rpm and different excess air ratios varied from 0.993 to 1.283. The test results demonstrated that the fuel energy flow rate of the hydrogen rotary engine and engine stability were reduced with the increase of excess air ratio. When the excess air ratio increased from 0.993 to 1.283, the hydrogen energy flow rate was decreased from 14.91 to 11.55 MJ/h. Both the flame development and propagation periods were increased with excess air ratio. CO emission was negligible, but HC, CO2 and NOx emissions were still detected due to the evaporation and possible burning of the lubrication-used gasoline, and oxidation reaction of nitrogen of the intake air.  相似文献   

8.
The combustion process within the cylinder directly influences the thermal efficiency and performance of the engines. As for the rotary engine, the long-narrow combustion chamber prevents the mixture from fully burning, which worsens the performance of the rotary engine. As a fuel with excellent properties, hydrogen can improve the combustion of the original engine. In this paper, improvements in combustion of a gasoline rotary engine by hydrogen supplement under different operating conditions were experimentally investigated. The experiment was conducted on a modified hydrogen-gasoline dual-fuel rotary engine equipped with an electronically-controlled fuel injection system. An electronic control module was specially made to command the fuel injection, excess air ratio and hydrogen volumetric fraction. Integral heat release fraction (IHRF) was employed to evaluate the combustion of the tested engine. The tested engine was first run at the idle speed of 2400 rpm and then operated at 4500 rpm to investigate the combustion of the hydrogen-blended gasoline rotary engine under different hydrogen volume fractions, excess air ratios and spark timings. The testing results demonstrated that the combustion of the gasoline rotary engine were all improved when the hydrogen was blended into the chamber under all tested conditions.  相似文献   

9.
This paper presented an experimental study about the idle performance of a rotary engine fueled with hydrogen and gasoline blends. The idle speed was reduced from original 2400 to 2300 and 2200 rpm, and hydrogen energy percentage (βH2) was varied from 0% to 35.0%. Test results showed that cyclic variation was raised with the decrease of idle speed whereas reduced with the increase of βH2. Both decreasing idle speed and increasing βH2 were effective on reducing engine fuel consumption. Total fuel energy flow rate was effectively dropped from 22.4 MJ/h under “2400 rpm and βH2 = 0%” to 20.01 MJ/h under “2200 rpm and βH2 = 35.0%”. Combustion duration was reduced through increasing βH2. HC and CO emissions were dropped with the increase of βH2, but increased after reducing idle speed. CO2 emission was decreased after reducing idle speed and adding hydrogen.  相似文献   

10.
Hydrogen and n-butanol are superior alternative fuels for SI engines, which show high potential in improving the combustion and emission characteristics of internal combustion engines. However, both still have disadvantages when applied individually. N-butanol fuel has poor evaporative atomization properties and high latent heat of vaporization. Burning n-butanol fuel alone can lead to incomplete combustion and lower temperature in the cylinder. Hydrogen is not easily stored and transported, and the engine is prone to backfire or detonation only using hydrogen. Therefore, this paper investigates the effects of hydrogen direct injection strategies on the combustion and emission characteristics of n-butanol/hydrogen dual-fuel engines based on n-butanol port injection/split hydrogen direct injection mode and the synergistic optimization of their characteristics. The energy of hydrogen is 20% of the total energy of the fuel in the cylinder. The experimental results show that a balance between dynamics and emission characteristics can be found using split hydrogen direct injection. Compared with the second hydrogen injection proportion (IP2) = 0, the split hydrogen direct injection can promote the formation of a stable flame kernel, shorten the flame development period and rapid combustion period, and reduce the cyclic variation. When the IP2 is 25%, 50% and 75%, the engine torque increases by 0.14%, 1.50% and 3.00% and the maximum in-cylinder pressure increases by 1.9%, 2.3% and 0.6% respectively. Compared with IP2 = 100%, HC emissions are reduced by 7.8%, 15.4% and 24.7% and NOx emissions are reduced by 16.4%, 13.8% and 7.9% respectively, when the IP2 is 25%, 50% and 75%. As second hydrogen injection timing (IT2) is advanced, CA0-10 and CA10-90 show a decreasing and then increasing trend. The maximum in-cylinder pressure rises and falls, and the engine torque gradually decreases. The CO emissions show a trend of decreasing and remaining constant. However, the trends of HC emissions and NOx emissions with IT2 are not consistent at different IP2. Considering the engine's dynamics and emission characteristics, the first hydrogen injection proportion (IP1) = 25% plus first hydrogen injection timing (IT1) = 240°CA BTDC combined with IP2 = 75% plus IT2 = 105°CA BTDC is the superior split hydrogen direct injection strategy.  相似文献   

11.
The Wankel rotary engine is a potential alternative to the reciprocating engine in hybrid applications because of its favorable energy to weight ratio. In this study, a Wankel rotary engine was modified to run on a hydrogen–gasoline blend. Hydrogen enrichment improved the performance of a lean-burn spark-ignition rotary engine operating at high speed and wide open throttle conditions with the original ignition timing, using 0%, %2, 4%, 5%, 7%, and 10% hydrogen energy fractions at the intake. The experimental results showed that adding hydrogen to gasoline in the engine improved the thermal efficiency and the power output. Hydrocarbon and carbon monoxide emissions were reduced while nitrogen oxide emissions increased with the increase of hydrogen fraction.  相似文献   

12.
The distinctive properties of hydrogen have initiated considerable applied research related to the internal combustion engine. Recently, it has been reported that NOx emissions were reduced by using hydrogen in a diesel engine at low temperature and heavy EGR conditions. As the continuing study, cylinder pressure was also investigated to determine the combustion characteristics and their relationship to NOx emissions. The test engine was operated at constant speed and fixed diesel fuel injection rate (1500 rpm, 2.5 kg/h). Diesel fuel was injected in a split pattern into a 2-L diesel engine. The cylinder pressure was measured for different hydrogen flow rates and EGR ratios. The intake manifold temperature was controlled to be the same to avoid the gas intake temperature variations under the widely differing levels (2%-31%) of EGR. The measured cylinder pressure was analyzed for characteristic combustion values, such as mass burn fraction and combustion duration.The rising crank angle of the heat release rate was unaffected by the presence of hydrogen. However, supplying hydrogen extended the main combustion duration. This longer main combustion duration was particularly noticeable at the heavy EGR condition. It correlated well with the reduced NOx emissions.  相似文献   

13.
Nowadays, the even increasing stringent environmental legislations have promoted interest in alternative fuels for internal combustion engines. Particularly, hydrogen is becoming a promising fuel due to its high specific energy and low emissions production. Environmentally, the main disadvantage of hydrogen is the high level of nitrogen oxides (NOx) which produces. In this regard, this work proposes a NOx reduction method which consists on direct injection of ammonia (NH3) into the combustion chamber. A numerical model validated with experimental measurements was carried out to analyze emissions and brake specific consumption in a commercial engine operating with diesel-hydrogen blends. Comparing to diesel operation, a 10% hydrogen content increases a 5.3% the peak pressure and 5.7% the maximum temperature. The CO2, CO and HC emissions are reduced but NOx emissions increase up to 18.3%. Several injection instants and ammonia flow rates were analyzed, obtaining more than 70% NOx reductions with a negligible effect on other emissions and brake specific consumption. It was found that the start of ammonia injection is too critical since the maximum NOx reduction takes place when the temperature is around 1200 K. The NOx reduction increases with the ammonia flow rate but an excessive quantity of ammonia can lead to un-reacted ammonia slip to the exhaust.  相似文献   

14.
An experimental and numerical study was performed to investigate the impact of Biodiesel B20 (blends 20% Rapeseed methyl ester with 80 % Diesel volumetric fraction) and different energetic fractions of hydrogen content (between 0 and 5%) on the mixture formation, combustion characteristics, engine performance and pollutant emissions formation. Experiments were carried out on a tractor Diesel engine, four-cylinders, four-stroke, 50 kW/2400 rpm, and direct injection. Simulations were conducted using the AVL codes (HYDSIM and BOOST 2013). Simulation results were validated against experimental data, by comparing the inline pressure, needle lift, in-cylinder pressure curves for Biodiesel B20 and pure Diesel fuels at 1400 rpm and 2400 rpm, respectively, under full load operating conditions. Good agreement with a maximum of 2.5% relative deviation on the peak results revealed that overall operation conditions Biodiesel B20 provides lower engine performance, efficiency, and emissions except the NOx which are slightly increased. The Biodiesel B20 has shorter ignition delay. By hydrogen addition to B20 with aspiration of the intake air flow the CO emissions, smoke, and total unburned hydrocarbon emissions THC decreased, while the NOx kept the same increasing trend for 1400 rpm and has not quite apparent trend for 2400 rpm. The enrichment by hydrogen of Diesel and B20 fuels has not a significant effect on ignition delay.  相似文献   

15.
The application of hydrogen direct-injection enrichment improves the performance of gasoline Wankel rotary engine, and the hydrogen injection strategy has a significant impact on combustion, knock, and emissions. The Z160F Wankel rotary engine was used as the investigated compact engine, and the simulation model was developed using CONVERGE software. The combustion, knock and emissions characteristics of the engine were studied with the different mass flow of hydrogen injection, i.e., the trapezoid, wedge, slope, triangle and rectangle type of gas injection rate shape. In the numerical simulations, the in-cylinder pressure oscillations were monitored using monitoring points, and the knock index (KI) was used as an evaluation indicator. The study revealed that the gas injection rate shape significantly affected the mixture of hydrogen and air, thus impacting combustion, knock and emissions. When the injection rate shape was rectangle, the flame speed was faster, the peak pressure in the cylinder was higher, and the corresponding crank angle was earlier, which led to higher pressure oscillations in the cylinder and larger KI. Based on the rectangle injection rate shape, the KI decreased by 75.81%, 33.47%, 26.46% and 76.58% for trapezoid, wedge, slope, and triangle, respectively, and the indicated mean effective pressure increased by 15.68%, 5.07%, 0.56% and 14.98%, respectively. Due to the small difference in maximum temperature, which resulted in very little variation in nitrogen oxides for each injection rate shape, the total hydrocarbon emissions of the trapezoid and triangle injection rate shape was high due to the delayed combustion phase. This paper provides a solution for direct hydrogen injection to improve the combustion, knock and emissions behavior of the rotary engine.  相似文献   

16.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

17.
Up to 90% hydrogen energy fraction was achieved in a hydrogen diesel dual-fuel direct injection (H2DDI) light-duty single-cylinder compression ignition engine. An automotive-size inline single-cylinder diesel engine was modified to install an additional hydrogen direct injector. The engine was operated at a constant speed of 2000 revolutions per minute and fixed combustion phasing of ?10 crank angle degrees before top dead centre (°CA bTDC) while evaluating the power output, efficiency, combustion and engine-out emissions. A parametric study was conducted at an intermediate load with 20–90% hydrogen energy fraction and 180-0 °CA bTDC injection timing. High indicated mean effective pressure (IMEP) of up to 943 kPa and 57.2% indicated efficiency was achieved at 90% hydrogen energy fraction, at the expense of NOx emissions. The hydrogen injection timing directly controls the mixture condition and combustion mode. Early hydrogen injection timings exhibited premixed combustion behaviour while late injection timings produced mixing-controlled combustion, with an intermediate point reached at 40 °CA bTDC hydrogen injection timing. At 90% hydrogen energy fraction, the earlier injection timing leads to higher IMEP/efficiency but the NOx increase is inevitable due to enhanced premixed combustion. To keep the NOx increase minimal and achieve the same combustion phasing of a diesel baseline, the 40 °CA bTDC hydrogen injection timing shows the best performance at which 85.9% CO2 reduction and 13.3% IMEP/efficiency increase are achieved.  相似文献   

18.
In this study, an electrolyser was used to supply hydrogen to the SI engine. Firstly, the appropriate operation point for the electrolyser was determined by adjusting the amount of KOH in the electrolyte to 5%, 10%, 20% and 30% by mass, and applying 12 V, 16 V, 20 V, 24 V and 28 V voltages. Tests were first carried out with the gasoline without the use of an electrolyser, followed by operating the electrolyser at the appropriate point and sending obtained H2 and O2 to the engine in addition to the gasoline. The SI engine was operated between 2500 rpm and 3500 rpm engine speeds with and without hydrogen addition. Cylinder pressure, the amount of gasoline, H2 and O2 consumed by the engine and the emission data were collected from the test system at the aforementioned engine speeds. Furthermore, indicated engine torque, indicated specific energy consumption, specific emissions and HRR values were calculated. According to the results obtained, improvement in ISEC values was observed, and CO and THC values were improved by up to 21.3% and 86.1% respectively. Even though the dramatic increase in NOx emissions cannot be averted, they can be controlled by equipment such as EGR three-way catalytic converter.  相似文献   

19.
This paper experimentally investigated the effect of hydrogen addition on the cold start performance of a methanol engine. The test was conducted on a modified four-cylinder gasoline engine. An electronically controlled hydrogen injection system was applied to realize the hydrogen port injection. The engine was started at an ambient temperature of 25 °C with two hydrogen flow rates of 0 and 189 dm3/s, respectively. The results demonstrated that hydrogen addition availed elevating the peak engine speed and cylinder pressure during the cold start. Both flame development and propagation periods are shortened after the hydrogen addition. When the hydrogen volume flow rate was raised from 0 to 189 dm3/s, HC, CO and total number of particulate emissions within 19 s from the onset of cold start were reduced by 68.7%, 75.2% and 72.4%, respectively. However, because of the enhanced in-cylinder temperature, NOx emissions were increased after the addition of hydrogen.  相似文献   

20.
In this research, effects of hydrogen addition on a diesel engine were investigated in terms of engine performance and emissions for four cylinders, water cooled diesel engine. Hydrogen was added through the intake port of the diesel engine. Hydrogen effects on the diesel engine were investigated with different amount (0.20, 0.40, 0.60 and 0.80 lpm) at different engine load (20%, 40%, 60%, 80% and 100% load) and the constant speed, 1800 rpm. When hydrogen amount is increased for all engine loads, it is observed an increase in brake specific fuel consumption and brake thermal efficiency due to mixture formation and higher flame speed of hydrogen gas according to the results. For the 0.80 lpm hydrogen addition, exhaust temperature and NOx increased at higher loads. CO, UHC and SOOT emissions significantly decreased for hydrogen gas as additional fuel at all loads. In this study, higher decrease on SOOT emissions (up to 0.80lpm) was obtained. In addition, for 0.80 lpm hydrogen addition, the dramatic increase in NOx emissions was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号