首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— In this paper, many popular methods to study transflective liquid‐crystal‐displays (LCDs) have been discussed, and several new transflective LCD configurations with a single‐cell gap have been proposed. The traditional double‐cell‐gap method gives the best match of the transmittance/reflectance voltage curve (TVC/RVC) and also the widest viewing angle, but also brings the highest fabrication complexity. The single‐cell‐gap transflective LCD is much easier to fabricate and also shows a good match of TVC/RVC. A new methodology has been shown to find optimal configurations for single‐cell‐gap transflective LCDs. New configurations using multimode in a single pixel include twisted nematic (TN) optically compensated bend (OCB), TN electrically controlled birefringence (ECB), and TN low‐twisted nematic (LTN). TN and hybrid‐aligned nematic (HAN) modes have been investigated for single‐mode transflective LCDs. The results exhibit high contrast ratio, a good match of TVC/RVC, as well as wide viewing angle.  相似文献   

2.
Abstract— Two configurations, (i) a double‐cell‐gap twisted nematic (DTN) liquid‐crystal display (LCD) and (ii) a single‐cell‐gap twisted‐nematic (TN) liquid‐crystal display (LCD) using a twisted LC retarder, were optimized for transflective liquid‐crystal displays. For the DTN configuration, both the single‐cell‐gap approach and the double‐cell‐gap approach were considered. The optimized configurations exhibit a high contrast ratio, wide viewing angles, and achromatic (black/white) switching in both the transmissive and reflective modes. They are easy to fabricate and also possess a perfect dark state. Both are suitable for high‐quality transflective TFT‐LCDs.  相似文献   

3.
Abstract— Based on the drop‐on‐demand characteristics of ink‐jet printing, the multi‐domain alignment liquid‐crystal display (LCD) could be achieved by using patterned polyimide materials. These polyimide ink locations with different alignment procedures could be defined in a single pixel, depending on the designer 's setting. In this paper, we combined the electro‐optical design, polyimide ink formulation, and ink‐jetting technology to demonstrate the application of multi‐domain alignment liquid‐crystal display manufactory. The first one was a multi‐domain vertical‐alignment LCD. After the horizontal alignment material pattern on the vertical alignment film, the viewing angle would reach 150° without compensation film. The second one was a single‐cell‐gap transflective LCD within integrating the horizontal alignment in the transmissive region and hybrid alignment in the reflective one in the same pixel. In addition, this transflective LCD was also demonstrated in the form of a 2.4‐in. 170‐ppi prototype.  相似文献   

4.
Abstract— A dual‐cell‐gap transflective liquid‐crystal display (TR‐LCD) with identical response time in both the transmissive and reflective regions is demonstrated. In the transmissive region, strong anchoring energy is used to decrease the response time, while in the reflective region, weak anchoring energy is used to increase the response time. And overdrive voltage technology is adopted to make the response time identical in both the transmissive and reflective regions. The device structure and operating principle of the TR‐LCD was analyzed, the anchoring energy in the transmissive and reflective regions was designed, and the response time and electro‐optic characteristics of the TR‐LCD was calculated. The simulated dual‐cell‐gap TR‐LCD demonstrated good performances.  相似文献   

5.
Abstract— A transflective polymer‐stabilized blue‐phase liquid‐crystal display (BP‐LCD) with a corrugated electrode structure is proposed. To balance the optical phase retardation between the transmissive (T) and reflective (R) regions, two device structures are proposed. The first device structure has the same inclination angles but different cell gaps in the T and R regions. And the second device structure has the same cell gap but different inclination angles in the T and R regions. Both of the device structures can obtain well‐matched VT and VR curves. This display exhibits low operating voltage, high optical efficiency, and a wide viewing angle.  相似文献   

6.
Abstract— A single‐cell‐gap transflective liquid‐crystal display with special electrodes was demonstrated. In the transmissive region, a strong longitudinal electric field was generated by decreasing the distance between the top and bottom transparent indium‐tin‐oxide electrodes; while in the reflective region, a weak longitudinal electric field is generated by increasing the distance between the top and bottom transparent indium‐tin‐oxide electrodes. And slit‐patterned electrodes were used to optimize the fringe field at the junction of the transmissive and reflective regions. As a result, both the transmissive and reflective display modes show well‐matched gray scales. The simulated single‐cell‐gap TR‐LCD has good performances.  相似文献   

7.
Abstract— A liquid‐crystal line retardation‐film technology by using a rod‐like liquid‐crystalline polymer (LCP) for various LCD modes have been developed. In particular, considerable improvements in viewing‐angle performance have been achieved for the twisted‐nematic (TN) and the transmissive/transflective electrically controlled birefringence (ECB) modes by using hybrid aligned nematic film (NH Film).  相似文献   

8.
Abstract— A ferroelectric liquid‐crystal (FLC) display was optimized as a transflective liquid‐crystal display (LCD). In this configuration, the single‐cell‐gap approach was considered. The optimized configuration exhibits a high contrast ratio, wide viewing angles, and achromatic (black/white) switching in both the transmissive and reflective modes. Because no double‐cell‐gap structure, no subpixel separation, and no patterning polarizers and retarders are included in the configuration, the configuration is easy to fabricate and also possess a perfect dark state. This configuration is also suitable for bistable applications.  相似文献   

9.
Abstract— A wide‐view transflective liquid‐crystal display (LCD) capable of switching between transmissive and reflective modes in response to different ambient‐light conditions is proposed. This transflective LCD adopts a single‐cell‐gap multi‐domain vertical‐alignment (MVA) cell that exhibits high contrast ratio, wide‐viewing angle, and good light transmittance (T) and reflectance (R). Under proper cell optimization, a good match between the VT and VR curves can also be obtained for single‐gamma‐curve driving.  相似文献   

10.
Abstract— A single‐cel l‐gap transflective liquid‐crystal display with two types of liquid‐crystal alignment based on an in‐plane‐switching structure is proposed. The transmissive region is almost homeotropically aligned with the rubbed surfaces at parallel directions while the reflective region has a homeotropic liquid‐crystal alignment. For every driving voltage for a positive‐dielectric‐anisotropy nematic liquid crystal, the effective cell‐retardation value in the transmissive region becomes larger than that in the reflective region because of optical compensation film which is generated by low‐pretilt‐angle liquid crystal in the transmissive region. Under the optimization of the liquid‐crystal cell and alignment used in the transmissive and reflective areas, the transmissive and reflective parts have similar gamma curves. An identical response time in both the transmissive and reflective regions and a desirable viewing angle for personal portable displays can also be obtained.  相似文献   

11.
Abstract— A single‐cell‐gap transflective LCD using active‐level‐shift (ALS) technology has been developed and is presented. An efficient pixel architecture has recently been designed to apply different voltages on transmissive and reflective subpixels through two separated storage capacitors, formed by a boosting electrode and pixel electrodes. A 2.2‐in. vertical‐alignment‐mode (VA) transflective LCD prototype with a similar gamma for both the transmissive and reflective areas was obtained. Compared to a conventional dual‐cell‐gap design, the new single‐cell‐gap design achieves a 17% higher aperture ratio and the contrast increased from 200:1 to 500:1.  相似文献   

12.
A transflective blue‐phase liquid crystal display (TRBP‐LCD) based on fringe in‐plane switching (FIS) electrodes is proposed. The proposed structure generates combined fringe and in‐plane electric fields that cause more liquid crystal (LC) molecules to reorient almost in plane above and between the pixel electrodes. The fringe field is mainly generated in the transmissive (T) region, and the horizontal electric field is mainly generated in the reflective (R) region. By optimizing the width of the pixel electrodes and the gap between two adjacent pixel electrodes, the different electric field intensity in the T and R regions contribute to balance the optical phase retardation between the T and R regions. As a result, the proposed TRBP‐LCD exhibits a low operating voltage and high optical efficiency, while it preserves a relatively simple fabrication process.  相似文献   

13.
A single‐cell‐gap transflective liquid crystal display with a nonuniform electric potential is demonstrated. The top substrate has a top planar common electrode, a transparent dielectric layer with a general dielectric constant is coated on the bottom substrate, and two planar pixel electrodes with the same size are coated on the dielectric layer and the bottom substrate, respectively. With the different gaps between the two planar pixel electrodes and top planar pixel electrode, the nonuniform electric potential from the transmissive region (T region) to the reflective region (R region) is generated, while a bumpy reflector is coated under the bottom substrate. In this device, with the dielectric layer, the pixel and common electrodes generate a strong electric potential in the T region and a relatively weak electric potential in the R region. Consequently, the T and R regions accumulate the same optical phase retardation. The simulation results show that the display exhibits reasonably low operating voltage, high optical efficiency, and well‐matched voltage‐dependent transmittance and reflectance curves. Besides, the fabrication process and the driving mode of the transflective liquid crystal display are relatively simple, and it is suitable for mobile applications.  相似文献   

14.
Abstract— An adjustable‐color‐gamut dual‐gap RGBW transflective liquid‐crystal display that uses a four‐color manufacturing process and a color‐processing algorithm to achieve the appropriate color performance in both the transmissive and reflective modes is presented. Based on superior‐color‐transformation units, the total brightness and color gamut can be modified under different ambience. The highest NTSC color gamut in the reflective mode (reflectance, 4.4%) that has been fabricated successfully for a RGBW 1.5‐in. dual‐gap panel is 23% with a 7%, 17%, and 40% NTSC color gamut in the transmissive mode by using different algorithms. Compared to a typical RGB panel, it not only provides flexibility for any environment but also satisfies a variety of personal requirements. Based on personal preference, users have more choices to adjust the LCD settings such as color saturation, brightness, etc. The smart RGBW TRLCD will definitely become the developing trend towards sunlight‐readable LCDs in the near future.  相似文献   

15.
Abstract— In order to reduce panel cost, reduce power consumption, and minimize thickness, a single panel with dual functions for high‐transmissive main displays and high reflective sub‐displays is becoming the trend. Two novel RGB‐W transflective 1.9‐in. a‐Si TFT LCDs have been developed to meet the requirements. By using the traditional seven‐mask dual‐cell‐gap structure, novel transflective tRGB‐t/rW TFT LCD and tRGB‐rW TFT‐LCD panels were fabricated with high transmittance and high reflectance, respectively. The optical clarity is excellent in both dark and bright conditions. Their superior optical performance is attributed to the high‐efficiency “transflective white” subpixel or “reflective white” subpixel.  相似文献   

16.
Abstract— A full‐color bistable transflective cholesteric liquid‐crystal display (Ch‐LCD) was demonstrated by using an imbedded image‐enhanced reflector (IER) on top of each transmissive subpixel. The RGB colors were achieved by patterning conventional color filters on a black‐and‐white Ch‐LCD. In addition, the IER on top of each transmissive subpixel provides similar paths for the transmissive backlight and the reflected ambient light. A simple transflective Ch‐LCD was demonstrated.  相似文献   

17.
Abstract— A novel deformed‐helix ferroelectric liquid‐crystal (DHFLC) mode in a vertically aligned (VA) configuration is described. In this configuration, several unique features of display performance such as uniform alignment, fast response, and analog gray‐scale capability are obtained. Particularly, this VA‐DHFLC mode allows for the defect‐free uniform alignment of both the FLC molecules and the smectic layers over a large area without employing additional processes such as rubbing or electric‐field treatment that are generally required for planar FLC modes. Based on the VA‐DHFLC mode, a transflective display having a single‐gap geometry with in‐plane electrodes on two substrates in the transmissive regions and on one substrate in the reflective regions is described.  相似文献   

18.
This paper proposes a line‐time optimization (LTO) technology for ultra‐large and high‐resolution liquid crystal display (LCD) televisions. Line‐time optimization enables a single‐bank data driver configuration without severe image degradation. When the proposed method is applied to an ultra‐high‐definition (UHD) LCD with a single‐bank data driver scheme, the LCD performance comparable to that of a dual‐bank data driver method can be obtained. The implementation of the proposed method helps in achieving desirable goals such as a reduction in the number of drivers and realization of a much more flexible design of UHD LCDs.  相似文献   

19.
Abstract— In‐cell retarders can be a major breakthrough for mobile LCDs. When a patterned in‐cell retarder replaces the external retarders on transflective LCDs, brighter and thinner transflective LCDs with lower power consumption and wider viewing angle can be obtained. Additionally, when in‐cell retarders are applied in reflective LCDs, the thickness of the LCD is considerably reduced without affecting the optical performance of the reflective LCD. This paper presents the technology needed to make in‐cell retarders and the performance of reflective and transflective LCDs with in‐cell retarders.  相似文献   

20.
Abstract— The use of an electric‐field‐driven liquid‐crystal (ELC) lens cell for switching between a 3‐D and 2‐D display is proposed. Due to the phase retardation of the non‐uniform LC directors, an ELC lens functions the same as a geometric lens. The parameters of an ELC for 3‐D applications are optimized through the simulation of the electrode configuration and voltage levels. A prototype was made where the ELC lens is placed in front of a liquid‐crystal display (LCD) 15 in. on the diagonal with a 99‐μm subpixel pitch. Under zero voltage, the ELC lens is a transparent medium and the users can see a clear 2‐D image. In 3‐D mode, the ELC lens array performs the same as a cylindrical lens array to the incident vertical polarization under suitable driving voltages. Placing a half‐wave plate between the LCD and ELC lens is proposed to change the polarization of the LCD to be parallel with the polarization lens direction of the ELC lens. The measurement of the horizontal luminance profile, performance of the ELC lens, and feasibility for 3‐D/2‐D switching was verified. The fabrication process for the ELC lens is compatible with the current LCD production process and enables the accurate control of the lens pitch of the ELC lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号