首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of excess air ratio (λ) and ignition advance angle (θig) on the combustion and emission characteristics of hydrogen enriched compressed natural gas (HCNG) on a 6-cylinder compressed natural gas (CNG) engine has been experimental studied in an engine test bench, aiming at enriching the sophisticated calibration of HCNG fueled engine and increasing the prediction accuracy of the SVM method on automobile engines. Three different fuel blends were selected for the experiment: 0%, 20% and 40% volumetric hydrogen blend ratios. It is noted that combustion intensity varies with the excess air ratio and the ignition advance angle, so are the emissions. The optimal value of λ or θig has been explored in the specific engine condition. Results show that blending hydrogen can enhance and advance the combustion and stability of CNG engine, and it also has some benefic influence on the emissions such as reducing the CO and CH4. Meanwhile, a simulation research on forecasting the engine performance by using the support vector machine (SVM) method was conducted in detail. The torque, brake specific fuel consumption and NOx emission have been selected to characterize the power, economic and emissions of the engine with various HCNG fuels, respectively. It can be seen that the optimal model built by the SVM method can highly describe the relationship of the engine properties and condition parameters, since the value of the complex correlation coefficient is larger than 0.97. Secondly, the prediction performance of the optimal model for torque or BSFC is much better than the case of NOx. Besides, the optimal model built by the PSO optimization method has the best prediction accuracy, and the accuracy of the model obtained based on the training group with 20% hydrogen blend ratio is the best compared with those of others. The upshots in this article provide experimental support and theoretical basis for the adoption of HCNG fuel on internal combustion engines as well as the application of intelligent algorithmic in the engine calibration technology field.  相似文献   

2.
An evaluation was performed on the efficiency and emissions from an engine fuelled with compressed natural gas (CNG) and a mixture of natural gas and hydrogen, respectively. The mixtures of CNG and hydrogen were named HCNG.  相似文献   

3.
Laser ignition (LI) is emerging as a strong technology to control the oxides of nitrogen (NOx) emissions from spark ignition (SI) engines without the need for any significant exhaust gas after-treatment and is an appropriate technology for meeting future emission norms in the automotive sector. In this study, particulate characteristics of LI engine fuelled with different compressed natural gas (CNG) and hydrogen mixtures [100% CNG, 10HCNG (10% v/v hydrogen with 90% v/v CNG), 30HCNG (30% v/v hydrogen with 70% v/v CNG), 50HCNG (50% v/v hydrogen with 50% v/v CNG) and 100% hydrogen] were investigated. Experiments were performed in a suitably modified single cylinder engine, which operated in LI mode at constant engine speed (1500 rpm) at five different engine loads (5, 10, 15, 20 and 25 Nm). Particulate characteristics were determined using an engine exhaust particle sizer (EEPS). Results showed that particle number concentration increased with increasing engine load. Number-size, surface area-size and mass-size distributions of particulates reflected that addition of hydrogen in the CNG improved particulate emission characteristics especially in nucleation mode particle (NMP) size range (10 nm < Dp < 50 nm). Among the test fuels, hydrogen-fuelled engine emitted the lowest number of particles. It was observed that the difference between particulate characteristics emitted by different test fuels reduced at higher engine loads. Significant contribution of lubricating oil in particulate emissions from both hydrogen as well as HCNG fuelled LI engine was an important finding of this study. Dominant contribution of larger particles (Dp > 50 nm) in total particle mass (TPM) was an important observation of this study. The qualitative correlation between total particle number (TPN) and TPM indicated that suitable fuel composition at different engine loads yielded cleaner exhaust from the LI engine. Overall, this study demonstrated that addition of hydrogen in CNG is advantageous from particulate reduction point of view, however, optimum fuel composition should be adjusted according to engine operating condition in order to reduce particulate emissions.  相似文献   

4.
The promise of reducing harmful and CO2 emissions by focusing on hydrogen-methane blends (HCNG) have recently attracted the interest of vehicle manufacturers and transport operators. Several experiments have been conducted in laboratory facilities to assess the potential of HCNG blends in order to decrease the exhaust emissions. This paper reports the results of experimental tests performed at the ENEA Casaccia Research Center aiming to evaluate the energy and environmental performances of a CNG vehicle when fuelled with a hydrogen-methane blend. Two buses for urban transit service were fuelled with HCNG blends with different percentage of hydrogen (5%, 10%, 15%, 20% and 25% of hydrogen by volume). A 100% methane gas was used as reference to compare the advantages and disadvantages that can be derived from the use of HCNG blends. Road tests have been carried out by running fixed tracks, which are representative of urban and suburban driving cycles. Vehicles were powered with a lean burn engine whose setup - based on ignition advance angle, has been tuned for controlling the NOx emissions. CO2 emissions have been investigated to evaluate the leverage effect based on an increased CO2 reduction resulting from an increased engine efficiency.  相似文献   

5.
With rapid depletion of petroleum resources, researchers are investigating alternate fuels to meet global transportation energy demand. Gaseous fuels such as compressed natural gas (CNG) and hydrogen are of special interest because of their cleaner combustion characteristics compared to liquid petroleum based fossil fuels. However both these gaseous fuels have some technical issues when they are used as stand-alone alternate fuel in conventional spark ignition (SI) engines. CNG suffers from lower energy density and narrow flammability range whereas backfiring tendency is highly pronounced in hydrogen fueled engines. Hydrogen enriched compressed natural gas (HCNG) mixtures are observed to be good alternative to these individual fuels since these mixtures do not pose the issues experienced by the constituent fuels i.e. CNG and hydrogen. In this study, experiments were conducted in a spark ignited gas engine using various compositions of HCNG mixtures having 0, 10, 20, 30, 50, 70 and 100% (v/v) hydrogen fraction. The performance and combustion characteristics of these test fuels were compared with that of baseline CNG, in order to find an optimum HCNG mixture composition for a single cylinder gas engine. Results obtained showed that 30HCNG mixture delivered superior engine performance compared to other HCNG mixtures and baseline CNG, which is in sharp contrast to 15HCNG being advocated globally.  相似文献   

6.
The objective of this study is to evaluate the power, efficiency and emissions of an electronic-controlled single-cylinder engine fueled with pure natural gas and natural gas–hydrogen blends, respectively. Replacing the nature gas with hydrogen/methane blend fuels was found to have a significant influence on engine performance. The effects of excess air ratio and spark timing were discussed. The results show that under certain engine conditions the maximum cylinder gas pressure, maximum heat release rate increased with the increase of hydrogen fraction. The increase of hydrogen fraction in the blends contributed to the increase of NOx and the decrease of HC and CO. The brake specific fuel consumption decreased with the increase of hydrogen fraction. Using HCNG at relatively leaner fuel–air mixtures and retarded spark timing totally improved the engine emissions without incurring the performance penalty.  相似文献   

7.
Research and development of hydrogen fuelled engines in China   总被引:1,自引:0,他引:1  
The present paper introduces the role of vehicles in the context of Chinese economy, Chinese energy security, Chinese environment and the sustainable development of China; expounds that hydrogen is the promising alternative fuel for vehicles in China; and points that developing hydrogen fuelled engine vehicle is inevitable for the further development of Chinese vehicle industry. Then, the paper reviews the research and development of hydrogen fuelled engines in China, and reports the most achievements obtained by Chinese researchers in the field of the hydrogen fuelled engines which involve hydrogen-enriched gasoline engine, hydrogen-enriched diesel engine, hydrogen-(compressed) natural gas dual (HNG/HCNG) fuel engine, and pure hydrogen internal combustion engine (H2ICE).  相似文献   

8.
Compressed natural gas (CNG) buses were adopted in urban areas as a promising alternative to diesel buses, which emitted plenty of harmful emissions. Although CNG can meet the current emission standards, satisfying the requirements of the next EURO-VI emission regulation without an additional peripheral device may be impossible. The use of a hydrogen-compressed natural gas (HCNG) blend can help achieve a reduction in automotive exhaust emissions as well as prepare for an upcoming hydrogen economy through the construction of hydrogen infrastructure. Moreover, an HCNG engine has higher thermal efficiency than a CNG engine, producing lesser harmful emissions.  相似文献   

9.
This paper presents an experimental study aimed at idle characteristics of a CNG engine fueled by HCNG with 55% hydrogen blend. The idle speed was reduced from original 800 r/min to 750 r/min and 700 r/min, and the characteristics of combustion & emissions at reduced idle speed were investigated. It is found that, for the HCNG engine, only reducing idle speed cannot reduce fuel consumption at conditions of fixed λ. In order to reduce fuel consumption and keep the COV at rather low levels, the excess air ratio must be increased properly while reducing the engine idle speed. Due to the large valve overlap (30°) of this inlet inject HCNG engine, CH4 emissions are mainly caused by scavenging, which account for the vast majority of THC emissions. The emissions of CO, THC and NOx are reduced with the decrease of ignition advance angle at a fixed λ.  相似文献   

10.
In this study, the effect of adding hydrogen to natural gas and EGR ratio was conducted on a diesel engine to investigate the engine performance and exhaust gases by AVL Fire multi-domain simulation software.For this investigation, a mixture of hydrogen fuel and natural gas replaced diesel fuel. The percentage of hydrogen in blend fuel changed from 0% to 40%. The compression ratio converted from 17:1 to 15:1. The EGR ratios were in three steps of 5%, 10%, and 15%, with different engine speeds from 1000 to 1800 RPM. The Gaussian process regression (GPR) was developed to model engine performance and exhaust emissions. The optimal values of EGR and the percentage of hydrogen in the blend of HCNG were extracted using a multi-objective genetic algorithm (MOGA).The results showed that by increasing EGR, thermal efficiency, the engine power, and specific fuel consumption decreased due to prolongation of combustion length while cumulative heat release increased but, its effect on cylinder pressure is insignificant. Adding hydrogen to natural gas increased the combustion temperature and, consequently NOx. While the amount of CO and HC decreased. The results of GPR and MOGA illustrated that at different engine speeds, the optimum values of EGR and HCNG were 6.35% and 31%, respectively.  相似文献   

11.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

12.
This paper presents the performance results of a 5.9 kW stationary diesel engine which was converted into spark ignition mode and run on compressed natural gas (CNG), methane enriched biogas (Bio-CNG) and biogas produced from biomethanation of jatropha and pongamia oil seed cakes. The performance of the engine with 12.65 compression ratio was evaluated at 30°, 35° and 40° ignition advance of TDC. The maximum brake power produced by the engine was found at ignition advance of 35° TDC for all the tested fuels. In comparison to diesel as original fuel, the power deteriorations of the engine was observed to be 31.8%, 35.6% and 46.3% on compressed natural gas, methane enriched biogas and raw biogas, respectively, due to its conversion from CI to SI mode. The methane enriched biogas showed almost similar engine performance as compared to compressed natural gas in terms of brake power output, specific gas consumption and thermal efficiency.  相似文献   

13.
The experimental investigation was carried out on a multi-cylinder spark ignition (SI) engine fuelled with compressed natural gas (CNG), hydrogen blended CNG (HCNG) and hydrogen with varying load at 1500 rpm in order to perform comparative exergy analysis. The exergy analysis indicates that work exergy, heat transfer exergy and exhaust exergy were the highest with hydrogen at all loads due to its high flame temperature, low quenching distance, and high flame speed. The engine's exergy efficiency was the highest with hydrogen (34.23%), and it was about 24.23% and 24.08% with CNG and HCNG respectively at high load (20.25 kW). This indicates a higher potential of hydrogen to convert chemical energy input of fuel into heat and then power output. The exergy destruction was observed minimum with hydrogen at all loads, and it was drastically reduced at high loads. The combustion irreversibility which was calculated using species present during combustion, was the main contributor to exergy destruction, and it decreased with hydrogen. The minimum combustion irreversibility was 11.75% with hydrogen, followed by HCNG and CNG with 16.46% and 18.88% respectively at high load. The high quality of heat due to high in-cylinder temperature and low entropy generation during combustion caused by less number of chemical species in hydrogen combustion are the main reasons for lower combustion irreversibility with hydrogen.  相似文献   

14.
Natural gas (NG) is one of the most important and successful alternative fuels for vehicles. Engine combustion and emission fuelled with natural gas have been reviewed by NG/gasoline bi-fuel engine, pure NG engine, NG/diesel dual fuel engine and HCNG engine. Compared to using gasoline, bi-fuel engine using NG exhibits higher thermal efficiency; produces lower HC, CO and PM emissions and higher NOx emission. The bi-fuel mode can not fully exert the advantages of NG. Optimization of structure design for engine chamber, injection parameters including injection timing, injection pressure and multi injection, and lean burn provides a technological route to achieve high efficiency, low emissions and balance between HC and NOx. Compared to diesel, NG/diesel dual fuel engine exhibits longer ignition delay; has lower thermal efficiency at low and partial loads and higher at medium and high loads; emits higher HC and CO emissions and lower PM and NOx emissions. The addition of hydrogen can further improve the thermal efficiency and decrease the HC, CO and PM emissions of NG engine, while significantly increase the NOx emission. In each mode, methane is the major composition of THC emission and it has great warming potential. Methane emission can be decreased by hydrogen addition and after-treatment technology.  相似文献   

15.
The idle performance of an 11-L, 6-cylinder engine equipped with a turbocharger and an intercooler was investigated for both compressed natural gas (CNG) and hydrogen-blended CNG (HCNG) fuels. HCNG, composed of 70% CNG and 30% hydrogen in volume, was used not only because it ensured a sufficient travel distance for each fueling, but also because it was the optimal blending rate to satisfy EURO-6 emission regulation according to the authors' previous studies. The engine test results demonstrate that the use of HCNG enhanced idle combustion stability and extended the lean operational limit from excess air ratio (λ) = 1.5 (CNG) to 1.6. A decrease of more than 25% in the fuel consumption rate was achieved in HCNG idle operations compared to CNG. Total hydrocarbon and carbon monoxide emissions decreased when fueled with HCNG at idle because of the low carbon content and enhanced combustion characteristics. In particular, despite hydrogen enrichment, less nitrogen oxides (NOx) were emitted with HCNG operations because the amount of fuel supplied for a stable idle was lower than with CNG operations, which eventually induced lower peak in-cylinder combustion temperature. This low HCNG fuel quantity in idle condition also induced a continuous decrease in NOx emissions with an increase in λ. The idle engine test results also indicate that cold-start performance can deteriorate owing to low exhaust gas temperature, when fueled with HCNG. Therefore, potential solutions were discussed, including combustion strategies such as retardation of spark ignition timing combined with leaner air/fuel ratios.  相似文献   

16.
Owing to high growth rate, being non-edible, and environmental friendliness; microalgae is a promising third generation biodiesel raw material. In this study, hydrogen and hydroxy gas aspirated compression ignition engine which was fuelled with microalgae biodiesel and low sulphur diesel fuel blend were investigated in order to evaluate their combined effect. The results showed that the brake power and torque output of the test engine decreased with microalgae biodiesel usage. Moreover, microalgae biodiesel addition results in lower carbon monoxide and nitrogen oxides emissions, and higher carbon dioxide. The introduction of hydrogen and hydroxy gas compensated the decrement of torque and power output and increment of carbon dioxide emission. The study enlightened that usage of microalgae biodiesel with hydrogen and hydroxy gas addition is a very promising combination from the environmental viewpoint.  相似文献   

17.
The increase in the compression ratio reduces the fuel consumption and improves the performance. These effects of compression ratio could be observed in all of the engines, such as compression or spark ignition engines. Moreover, due to the compression ratio constraint based on the knocking phenomenon in spark ignition engines, there will always be an optimal compression ratio, which is one of the most fundamental factors in engine design. The optimum compression ratio could be achieved depending on the type of fuel, but in the case of bi-fuel engines, since the nature of each fuel is different, the design must be relatively optimal for both fuels. In this work, by using the VCR (variable compression ratio) strategy, the bi-fuel EF7 engine performance, combustion, and emissions were investigated in different compression ratios when the engine uses gasoline or HCNG (hydrogen enriched compressed natural gas) as fuel. The results revealed that by changing the compression ratio from 11.05 (actual compression ratio of engine) to 11.80 in HCNG mode, an increase of 13% in power could be achieved. Also CO formation, at the compression ratio of 11.80, was slightly lower (7%) than the compression ratio of 11.05. In addition, by reducing the compression ratio from 11.05 to 10.50 in gasoline mode, there was a significant increase in emissions; that was 44% for the NOx and 16% for the CO, which could be one of the limiting factors of the advance in spark timing. Moreover, due to the VCR strategy and the significant optimization of the compression ratio, the combinatory method of VCR – HCNG can be used as an effective method for the bi-fuel engines in order to improve the performance and reduce emissions.  相似文献   

18.
车用发动机燃用天然气掺氢燃料的性能计算分析与研究   总被引:2,自引:1,他引:1  
为了研究天然气掺氢发动机的燃烧特性,从模拟试验的角度运用大型发动机软件建立了6缸火花点火天然气掺氢发动机的虚拟样机,并经过试验验证该模型基本准确.通过仿真计算得出,天然气发动机在掺入氢气之后,提高了燃烧速度,明显拓宽了发动机的稀燃极限.在掺入氢气30 %(体积百分比)时,发动机的综合性能指标较好;提高压缩比,指示热效率得到提高.  相似文献   

19.
This paper describes an experimental activity performed on a passenger car powered by a spark ignition engine fuelled alternatively with natural gas (CNG) and hydrogen-natural gas blends, with 15% (HCNG15) and 30% (HCNG30) of hydrogen by volume. The vehicle was tested on a chassis dynamometer over different driving cycles, allowing the investigation of more realistic operating conditions than those examined on an engine test bed at steady state conditions. Fuel consumption was estimated using the carbon balance methodology, allowing the comparison of engine average efficiency over the driving cycles for the tested fuels. Furthermore, cylinder pressure was measured and, by processing the pressure signal, a combustion analysis was performed allowing to estimate the burning rate and combustion phasing. Ignition timing was the same for all the tested fuels, in order to assess their interchangeability on in-use vehicles. Results showed CO2 emission reduction between 3% and 6% for HCNG15 and between 13% and 16% for HCNG30 respect to natural gas. Fuel consumption in MJ/km did not show significant differences between CNG and HCNG15, while reductions between 3% and 7% have been observed with HCNG30. The heat release rate increased with hydrogen content in the blends, reaching values higher than those attained using CNG. The combustion duration, calculated as the angle between 10% and 90% of heat released, has been shortened, with 16% reduction for HCNG15 and 21% for HCNG30 respect to CNG at 2.5 bar imep and 2400 rpm. As a consequence, hydrogen addition resulted in a combustion phasing advance respect to CNG. Cycle-by-cycle variability decreased, particularly at low loads, due to the positive effect of hydrogen on combustion stability.  相似文献   

20.
This paper investigates the effect of various hydrogen ratios in HCNG (hydrogen enriched compressed natural gas) fuels on combustion and emission characteristics of a turbocharged spark ignition natural gas engine at idling conditions. The experiments were taken at hydrogen fractions of 0%, 30%, 55% and 75% by volume and were conducted under various operating conditions including different excess air ratio λ and spark timing θig. It is found that under various λ and θig, the addition of hydrogen can significantly reduce CH4 emission and CO emission, although NOx emission increased with the hydrogen addition, it was relatively low at idle conditions compared to other emissions. Meanwhile the addition of hydrogen can significantly reduce COVimep (coefficient of variation of the indicated mean effective pressure), extend the lean burn limit, decrease the combustion duration, achieve higher thermal efficiency and reduce fuel consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号