首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper used the opposed-flow flame model and GRI 3.0 mechanism to investigate NO emission characteristics of H2-rich and H2-lean syngas under diffusion and premixed conditions, respectively, and analyzed influences of adding H2O, CO2 and N2 on NO formation from the standpoint of thermodynamics and reaction kinetics. For diffusion flames, thermal route is the dominant pathway to produce NO, and adding N2, H2O and CO2 shows a decreasing manner in lowering NO emission. The phenomenon above is more obvious for H2-rich syngas because it has higher flame temperature. For premixed flames, adding CO2 causes higher NO concentration than adding H2O, because adding CO2 produces more O radical, which promotes formation of NO through NNH + O = NH + NO, NH + O = NO + H and reversed N + NO = N2 + O. And in burnout gas, thermal route is the dominant way for NO formation. Under this paper's conditions, adding N2 increases the formation source of NO as well as decreases the flame temperature, and it reduces the NO formation as a whole. In addition, for H2-lean syngas and H2-rich syngas with CO2 as the diluent, N + CO2 = NO + CO plays as an important role in thermal route of NO formation.  相似文献   

2.
The radiation effect on flame temperature and NO emission of H2-lean (0.2H2 + 0.8CO) and H2-rich (0.8H2 + 0.2CO) syngas/air counterflow diffusion flames was numerically investigated using OPPDIF code incorporated with the optical thin model, statistical narrow band model and adiabatic condition. Firstly, the coupled effect of strain rate and radiation was studied. Disparate tendencies of NO emission with an increasing strain rate between H2-lean and H2-rich syngas flames were found at very small strain rate, and the effect of radiation reabsorption on NO formation can be neglected when the strain rate was greater than 100 s?1 for both H2-lean and H2-rich syngas flames. Because the radiation effect is vital to flames with small strain rate, its impact on flame temperature and NO emission was investigated in detail at a strain rate of 10 s?1. The results indicated that NO formation is more sensitive to radiation reabsorption than flame temperature, especially for the H2-rich syngas flame. The underlying mechanism was discovered by using reaction pathway analysis. Furthermore, the radiation effect under CO2 dilution of the syngas fuel was examined. It was demonstrated that the radiation effect on flame temperature became more prominent with the increase of CO2 concentration for both H2-lean and H2-rich syngas. The radiation effect on NO emission increased first and then decreased with an increasing CO2 content for H2-lean syngas, whereas for H2-rich syngas the radiation effect is monotonic.  相似文献   

3.
Extensive computations were made to determine the flammability limits of opposed-jet H2/CO syngas diffusion flames from high stretched blowoff to low stretched quenching. Results from the U-shape extinction boundaries indicate the minimum hydrogen concentrations for H2/CO syngas to be combustible are larger towards both ends of high strain and low strain rates. The most flammable strain rate is near one s−1 where syngas diffusion flames exist with minimum 0.002% hydrogen content. The critical oxygen percentage (or limiting oxygen index) below which no diffusion flames could exist for any strain rate was found to be 4.7% for the equal-molar syngas fuels (H2/CO = 1), and the critical oxygen percentage is lower for syngas mixture with higher hydrogen content. The flammability maps were also constructed with strain rates and pressures or dilution gases percentages as the coordinates. By adding dilution gases such as CO2, H2O, and N2 to make the syngas non-flammable, besides the inert effect from the diluents, the chemical effect of H2O contributes to higher flame temperature, while the radiation effect of H2O and CO2 plays an important role in the flame extinction at low strain rates.  相似文献   

4.
In recent years, research efforts have been channeled to explore the use of environmentally-friendly clean fuel in lean-premixed combustion so that it is vital to understand fundamental knowledge of combustion and emissions characteristics for an advanced gas turbine combustor design. The current study investigates the extinction limits and emission formations of dry syngas (50% H2-50% CO), moist syngas (40% H2-40% CO-20% H2O), and impure syngas containing 5% CH4. A counterflow flame configuration was numerically investigated to understand extinction and emission characteristics at the lean-premixed combustion condition by varying dilution levels (N2, CO2 and H2O) at different pressures and syngas compositions. By increasing dilution and varying syngas composition and maintaining a constant strain rate in the flame, numerical simulation showed among diluents considered: CO2 diluted flame has the same extinction limit in moist syngas as in dry syngas but a higher extinction temperature; H2O presence in the fuel mixture decreases the extinction limit of N2 diluted flame but still increases the flame extinction temperature; impure syngas with CH4 extends the flame extinction limit but has no effect on flame temperature in CO2 diluted flame; for diluted moist syngas, extinction limit is increased at higher pressure with the larger extinction temperature; for different compositions of syngas, higher CO concentration leads to higher NO emission. This study enables to provide insight into reaction mechanisms involved in flame extinction and emission through the addition of diluents at ambient and high pressure.  相似文献   

5.
Syngas is a promising alternative fuel for stationary power generation due to cleaner combustion than convectional fossil fuels. During the gasification processes, the by-products of CO2, H2O, or N2 may be present in the syngas mixture to control the flame temperature and emissions. Several studies indicated that syngas with dilutions is capable of reducing pollutant emissions such as NOx emissions. This work applied a numerical model of opposed-jet diffusion fames to explore the dilution effects on NOx formation and differentiate the inert effect, thermal/diffusion effect, chemical effect, and radiation effect from CO2, H2O, or N2 dilutions. The numerical study was performed by a revised OPPDIF program coupling with narrowband radiation model and detail chemical mechanism. The dilution effects on NOx formation were analyzed by comparing the realistic and hypothetical cases. Regardless the diluent types, the inert effect is the main cause to reduce NO production, followed by chemical effect and radiation effect. The thermal/diffusion effect may promote NO formation because the preferential diffusion due to different diffusivities between diluents and syngas magnifies the reaction rate locally. CO2 dilution reduces NO by radiation effect at low strain rate, and contributes NO reduction by chemical effect at high strain rate. At the same dilution percentage, CO2 dilution reduces NO production the most, followed by H2O and N2. Besides the thermal/diffusion effect, the chemical effect of H2O enhances NO production through thermal route and reburn route.  相似文献   

6.
This paper reports a numerical study on the combustion and extinction characteristics of opposed-jet syngas diffusion flames. A model of one-dimensional counterflow syngas diffusion flames was constructed with constant strain rate formulations, which used detailed chemical kinetics and thermal and transport properties with flame radiation calculated by statistic narrowband radiation model. Detailed flame structures, species production rates and net reaction rates of key chemical reaction steps were analyzed. The effects of syngas compositions, dilution gases and pressures on the flame structures and extinction limits of H2/CO synthetic mixture flames were discussed. Results indicate the flame structures and flame extinction are impacted by the compositions of syngas mixture significantly. From H2-enriched syngas to CO-enriched syngas fuels, the dominant chain reactions are shifting from OH + H2→H + H2O for H2O production to OH + CO→H + CO2 for CO2 production through the key chain-branching reaction of H + O2→O + OH. Flame temperature increases with increasing hydrogen content and pressure, but the flame thickness is decreased with pressure. Besides, the study of the dilution effects from CO2, N2, and H2O, showed the maximum flame temperature is decreased the most with CO2 as the dilution gas, while CO-enriched syngas flames with H2O dilution has highest maximum flame temperature when extinction occurs due to the competitions of chemical effect and radiation effect. Finally, extinction limits were obtained with minimum hydrogen percentage as the index at different pressures, which provides a fundamental understanding of syngas combustion and applications.  相似文献   

7.
This paper reported a numerical study on the NOx emission characteristics of opposed-jet syngas diffusion flames. A narrowband radiation model was coupled to the OPPDIF program, which used detailed chemical kinetics and thermal and transport properties to enable the study of 1-D counterflow syngas diffusion flames with flame radiation. The effects of syngas composition, pressure and dilution gases on the NOx emission of H2/CO synthetic mixture flames were examined. The analyses of detailed flame structures, chemical kinetics, and nitrogen reaction pathways indicate NOx are formed through Zeldovich (or thermal), NNH and N2O routes both in the hydrogen-lean and hydrogen-rich syngas flames at normal pressure. Zeldovich route is the main NO formation route. Therefore, the hydrogen-rich syngas flames produce more NO due to higher flame temperatures compared to that for hydrogen-lean syngas flames. Although NNH and N2O routes also are the primary NO formation paths, a large amount of N2 will be reformed from NNH and N2O species. For hydrogen-rich syngas flames, the NO formation from NNH and N2O routes are lesser, where NO can be dissipated through the reactions of NH + NO  N2 + OH and NH + NO  N2O + H more actively. At a rather low pressure (0.01 atm), NNH-intermediate route is the only formation path of NO. Increasing pressure then enhances NO formation reactions, especially through Zeldovich mechanisms. However, at higher pressures (5–10 atm), NO is then converted back to N2 through reversed N2O route for hydrogen-lean syngas flames, and through NNH as well for hydrogen-rich syngas flames. In addition, the dilution effects from CO2, H2O, and N2 on NO emissions for H2/CO syngas flames were studied. The hydrogen-lean syngas flames with H2O dilution have the lowest NO production rate among them, due to a reduced reaction rate of NNH + O  NH + NO. But for hydrogen-rich syngas flames with CO2 dilution, the flame temperatures decrease significantly, which leads to a reduction of NO formation from Zeldovich route.  相似文献   

8.
The effect of CO2/N2/CH4 dilution on NO formation in laminar coflow H2/CO syngas diffusion flames was experimentally and numerically investigated. The results reveal that the NO emission index increases with H2/CO mole ratio. In all cases, CO2/N2/CH4 dilution can reduce the peak temperature of syngas flame and have the ability to reduce peak flame temperature is decreased in the following order: CO2>N2>CH4. CO2/N2 dilution reduces the NO formation in syngas flame while CH4 dilution promotes the NO formation. Besides, the dilution of CO2/N2/CH4 can reduce the peak mole fraction of OH and its variations with H2/CO mole ratio and dilution ratio show the same trend as the peak flame temperature variations. The height of the flame with CO2 and N2 dilution increases with dilution ratio. The flame with CH4 dilution becomes higher and wider with the increase of dilution ratio.  相似文献   

9.
The NO mechanism under the moderate or intense low-oxygen dilution (MILD) combustion of syngas has not been systematically examined. This paper investigates the NO mechanism in the syngas MILD regime under the dilution of N2, CO2, and H2O through counterflow combustion simulation. The syngas reaction mechanism and the counterflow combustion simulation are comprehensively validated under different CO/H2 ratios and strain rates. The effects of oxygen volume fraction, CO/H2 ratio, pressure, strain rate, and dilution atmosphere are systematically investigated. For all the MILD cases, the contribution of the prompt and NO-reburning routes to the overall NO emission is less than 0.1% due to the lack of CH4 in fuel. At atmospheric pressure, the thermal route only accounts for less than 20% of the total NO emission because of the low reaction temperature. Moreover, at atmospheric pressure, the contribution of the NNH route to NO emission is always larger than 55% in the N2 atmosphere. The N2O-intermediate route is enhanced in CO2 and H2O atmospheres due to the increased third-body effects of CO2 and H2O through the reaction N2 + O (+M) ? N2O (+M). Especially in the H2O atmosphere, the N2O-intermediate route contributes to 60% NO at most. NO production is reduced with increasing CO/H2 ratio or pressure, mainly due to decreased NO formation from the NNH route. Importantly, a high reaction temperature and low NO emission are simultaneously achieved at high pressure. To minimize NO emission, the reactions should be operated at high values of CO/H2 ratios (i.e., >4) and pressures (e.g., P > 10 atm), low oxygen volume fractions (e.g., XO2 < 15%), and using H2O as a diluent. This study provides a new fundamental understanding of the NO mechanism of syngas MILD combustion in N2, CO2, and H2O atmospheres.  相似文献   

10.
The dilution effect of air stream according to agent type on flame structure and NO emission behaviour is numerically simulated with detailed chemistry in CH4/air counterflow diffusion flame. The volume percentage of diluents (H2O, CO2, and N2) in air stream is systematically changed from 0 to 10. The radiative heat loss term, based on an optically thin model, is included to clearly describe the flame structure and NO emission behaviour especially at low strain rates. The effect of dilution of air stream on the decrease of maximum flame temperature varies as CO2>H2O>N2, even if heat capacity of H2O is the highest. It is also found that the addition of CO2 shows the tendency towards the reduction of flame temperature in both the thermal and chemical sides, while the addition of H2O enhances the reaction chemically and restrains it thermally due to a super‐equilibrium effect of the chain carrier radicals caused by the breakdown of H2O in high‐temperature region. The comparison of the nitrogen chemical reaction pathway between the cases of the addition of CO2 and H2O clearly displays that the addition of CO2 is much more effective to reduce NO emission. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The dilution effect of air stream according to agent type on flame structure and NO emission behaviour is numerically analysed with detailed chemistry. The adopted fuel is hydrogen diluted with the argon of volume percentage 50 per cent and the volume percentage of diluents (H2O, CO2 and N2) in air stream is systematically changed from 10 to 50. The radiative heat loss term, based on an optically thin model, is included to clearly describe the flame structure and NO emission behaviour, especially at low strain rates. The effect of dilution of air stream on the decrease of maximum flame temperature varies as CO2>H2O>N2. The qualitative tendency of the numerically predicted mole fractions of H, O and OH is well described using a simplified formula, based on a partial equilibrium concept. It is seen that the H2O addition to air stream is the most effective for reducing NO emission. In the case of the addition of H2O and N2 the NO emission behaviour is governed by the thermal effect and in the case of CO2 addition it is governed by both the thermal effect and the chemical effect. But the chemical effect, which is mainly attributed by the Fenimore mechanism to the breakdown of CO2, is much more predominant in comparison with the thermal effect. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
For the combustion of the mixture of blast furnace gas, natural gas, and coke oven gas in industrial burners, how to improve combustion efficiency and reduce pollutant emission are of significance. To accomplish this, an industrial partially premixed burner with a combustion diagnostic system is used to experimentally reveal the characteristics and NOX emission of H2/CH4/CO/air flame under CO2, N2, and CO2/N2 (replacing half of N2 with CO2) dilution. NOX emission and flame length, temperature profile, along with CO, CH4, and CO2 concentration profiles are analyzed with the three diluents in the fuel stream under different dilution rates (0–32% by volume). Experimental results show that for lean H2/CH4/CO combustion, greater proportions of CO2 in the diluent affect flame characteristics in various ways. These effects include longer flame length, lower highest flame temperature, the highest flame temperature being located farther away from the nozzle, and the highest CO2 concentration being located nearer the nozzle. Furthermore, results of CO, CH4, and CO2 concentrations indicate that chemical reactions in the flame are significantly affected by CO2 owing to the series reaction CH4?CH3→CO?CO2. Finally, increasing diluents or the ratio of CO2 in diluents has the benefit of reducing NOX emission.  相似文献   

13.
Chemical effects of added CO2 on flame extinction characteristics are numerically studied in H2/CO syngas diffusion flames diluted with CO2. The two representative syngas flames of 80% H2 + 20% CO and 20% H2 + 80% CO are inspected according to the composition of fuel mixture diluted with CO2 and global strain rate. Particular concerns are focused on impact of chemical effects of added CO2 on flame extinction characteristics through the comparison of the flame characteristics between well-burning flames far from extinction limit and flames at extinction. It is seen that chemical effects of added CO2 reduce critical CO2 mole fraction at flame extinction and thus extinguish the flame at higher flame temperature irrespective of global strain rate. This is attributed by the suppression of the reaction rate of the principal chain branching reaction through the augmented consumption of H-atom from the reaction CO2 + H→CO + OH. As a result the overall reaction rate decreases. These chemical effects of added CO2 are similar in both well-burning flames far from extinction limit and flames at extinction. There is a mismatching in the behaviors between critical CO2 mole fraction and maximum flame temperature at extinction. This anomalous phenomenon is also discussed in detail.  相似文献   

14.
Fe-Ba/ZSM-5 catalysts were prepared for NO + O2 adsorption and NO reduction by CO at 250–400 °C. NO adsorption and reduction were investigated for different Fe contents, while the Ba content was fixed at 5 wt.%. The catalysts were characterized by BET, SEM, XRD, XPS, H2-TPD, and in situ DRIFTS. The NO + CO activity tests of Fe-Ba/ZSM-5 catalysts showed that the NO reduction efficiencies were strongly affected by temperature. The NOx adsorption capacity of Fe-Ba/ZSM-5 catalysts increased with increasing Fe loading. The results of catalyst characterization showed that the dispersion of Fe species is one of the most important factors affecting NO reduction and adsorption performance. High Fe loading increased the amount of adsorbed NOx, while the NO + CO reaction was favored by good dispersion of Fe species. However, the NOx adsorption capacity decreased for Fe loadings above 8.3% due to the aggregation of metal oxides.  相似文献   

15.
A numerical study has been conducted to clearly grasp the impact of chemical effects caused by added CO2 and of flame location on flame structure and NO emission behaviour. Flame location affects the major source reaction of CO formation, CO2+H→CO+OH and the H‐removal reaction, CH4+H→CH3+H2. It is, as a result, seen that the reduction of maximum flame temperature due to chemical effects for fuel‐side dilution is mainly caused by the competition of the principal chain branching reaction with the reaction, CH4+H→CH3+H2, while that for fuel‐side dilution is attributed to the competition of the principal chain branching reaction with the reaction, CO2+H→CO+OH. The importance of the NNH mechanism for NO production, where the reaction pathway is NNH→NH→HNO, is recognized. In C‐related reactions most of NO is the direct outcome of (R171) and the contribution of (R171) becomes more and more important with increasing amount of added CO2 as much as the reaction step (R171) competes with the key reaction of thermal mechanism, (R237), for N atom. This indicates a possibility that NO emission in hydrogen flames diluted with CO2 shows less dependent behaviour upon flame temperature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Important role of chemical interaction in flame extinction is numerically investigated in downstream interaction among lean (rich) and lean (rich) premixed as well as partially premixed H2- and CO-air flames. The strain rate varies from 30 to 5917 s−1 until interacting flames cannot be sustained anymore. Flame stability diagrams mapping lower and upper limit fuel concentrations for flame extinction as a function of strain rate are presented. Highly stretched interacting flames are survived only within two islands in the flame stability map where partially premixed mixture consists of rich H2-air flame, extremely lean CO-air flame, and a diffusion flame. Further increase in strain rate finally converges to two points. It is found that hydrogen penetrated from H2-air flame (even at lean flame condition) participates in CO oxidation vigorously due to the high diffusivity such that it modifies the slow main reaction route CO + O2 → CO2 + O into the fast cyclic reaction route involving CO + OH → CO2 + H. These chemical interactions force even rich extinction boundaries with deficient reactant Lewis numbers larger than unity to be slanted at high strain rate. Appreciable amount of hydrogen in the side of lean H2-air flame also oxidizes the CO penetrated from CO-air flame, and this reduces flame speed of the H2-air flame, leading to flame extinction. At extremely high strain rates, interacting flames are survived only by a partially premixed flame such that it consists of a very rich H2-air flame, an extremely lean CO-air flame, and a diffusion flame. In such a situation, both the weaker H2- and CO-air flames are parasite on the stronger diffusion flame such that it can lead to flame extinction in the situation of weakening the stronger diffusion flame. Important role of chemical interaction in flame extinction is discussed in detail.  相似文献   

17.
Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar have been numerically simulated with detailed chemistry. The combination of H2, CO2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO2. A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO2, N2O and Fenimore are taken into account to separately evaluate the effects of CO2 addition on NO emission characteristics. The increase of added CO2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N2O and NO2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO2 quantity increase, NO production is remarkably augmented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, effect of carbon dioxide dilution on explosive behavior of syngas/air mixture was investigated numerically and experimentally. Explosion in a 3-D cylindrical geometry model with dimensions identical to the chamber used in the experiment was simulated using ANSYS Fluent. The simulated results showed that after ignition, the flame front propagated outward spherically until it touched the wall, like the propagating flame observed in the experiment. Both experimental and simulated results presented a same trend of decreasing the maximum explosion pressure and prolonging the explosion time with CO2 dilution. The results showed that for CO2 additions, the maximum explosion pressure decreased linearly and the explosion time increased linearly, while the maximum rate of pressure rise decreased nonlinearly, which can be correlated to an exponential equation. In addition, both results showed a good agreement for syngas/air flame with CO2 addition up to 20% in volume. However, larger discrepancies were observed for higher levels of CO2 dilutions. Of the three diluents tested, carbon dioxide displayed the strongest effect in reducing explosion hazard of syngas/air flame compared to helium and nitrogen. Chemical kinetic analysis results showed that maximum concentration of major radicals and net reaction rates of important reactions drastically decreased with CO2 addition, causing a reduction of laminar flame speed.  相似文献   

19.
A narrowband radiation model is coupled to the OPPDIF program, which uses detailed chemical kinetics and thermal and transport properties to enable the study of one-dimensional counterflow H2/O2 diffusion flames with CO2 as dilution gas over the entire range of flammable strain rates. The effects of carbon dioxide dilution, ambient pressure and inlet temperature of opposed jets on the extinction limits and flame structures are compared and discussed. The extinction limits are presented using maximum flame temperature and strain rate as coordinates. Both high-stretch blowoff and the low-stretch quenching limits are computed. When the CO2 dilution percentage is higher, the flame is thinner and flame temperature is lower. The combustible range of strain rates is decreased with increasing CO2 percentage due to the effects of CO2 dilution, which is categorized as dilute effect, chemical effect and radiation effect. In addition, the flame temperature of low-stretch diffusion flame with radiation loss is substantially lower than that computed with the non-radiation model. This large temperature drop results from the combined effect of flame radiation and chemical kinetics. The extinction limits and flame temperature are increasing with increasing atmospheric pressure and temperature, but the flame thickness is decreased with the pressure. At higher pressure and temperature, the extinction limits are extended more on the high-stretch blowoff limits, indicating the influence of the ambient pressure and temperature on the chemical reaction.  相似文献   

20.
High temperature co-electrolysis of H2O/CO2 allows for clean production of syngas using renewable energy, and the novel fuel-assisted electrolysis can effectively reduce consumption of electricity. Here, we report on symmetric cells YSZ-LSCrF | YSZ | YSZ-LSCrF, impregnated with Ni-SDC catalysts, for CH4-assisted co-electrolysis of H2O/CO2. The required voltages to achieve an electrolysis current density of ?400 mA·cm?2 at 850 °C are 1.0 V for the conventional co-electrolysis and 0.3 V for the CH4-assisted co-electrolysis, indicative of a 70% reduction in the electricity consumption. For an inlet of H2O/CO2 (50/50 vol), syngas with a H2:CO ratio of ≈2 can be always produced from the cathode under different current densities. In contrast, the anode effluent strongly depends upon the electrolysis current density and the operating temperature, with syngas favorably produced under moderate current densities at higher temperatures. It is demonstrated that syngas with a H2:CO ratio of ≈2 can be produced from the anode at a formation rate of 6.5·mL min?1·cm?2 when operated at 850 °C with an electrolysis current density of ?450 mA·cm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号