首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract— Multi‐view spatial‐multiplexed autostereoscopic 3‐D displays normally use a 2‐D image source and divide the pixels to generate perspective images. Due to the reduction in the resolution of each perspective image for a large view number, a super‐high‐resolution 2‐D image source is required to achieve 3‐D image quality close to the standard of natural vision. This paper proposes an approach by tiling multiple projection images with a low magnification ratio from a microdisplay to resolve the resolution issue. Placing a lenticular array in front of the tiled projection image can lead to an autostereoscopic display. Image distortion and cross‐talk issues resulting from the projection lens and pixel structure of the microdisplay have been addressed with proper selection of the active pixel and adequate pixel grouping and masking. Optical simulation has shown that a 37‐in. 12‐view autostereoscopic display with a full‐HD (1920 × 1080) resolution can be achieved with the proposed 3‐D architecture.  相似文献   

2.
Abstract— An autostereoscopic display based on dual‐directional light guides with a fast‐switching liquid‐crystal panel was designed and fabricated to provide better 3‐D perception with image qualities comparable to that of 2‐D displays. With two identical micro‐grooved light guides, each with a light‐controlled ability in one direction, two restricted viewing cones are formed to project pairs of parallax images to the viewer's respective eyes sequentially. Crosstalk of less than 10% located within ±8°–±30° and an LC response time of 7.1 msec for a 1.8‐in. LCD panel can yield acceptable 3‐D perceptions at viewing distance of 5.6–23 cm. Moreover, 2‐D/3‐D compatibility is provided in this module.  相似文献   

3.
Abstract— Our research is aimed at developing a spatial‐imaging‐type integral three‐dimensional (3‐D) display based on an integral photography method using an extremely high‐resolution projector. One problem with the projection‐type integral 3‐D display is that geometrical distortion in projected elemental images causes spatial deformation of the displayed 3‐D image. In this study, a general relationship between the geometric distortion of elemental images and the spatial deformation of reconstructed 3‐D images were analyzed. A projection‐type integral 3‐D display with a distortion compensator which corrects the geometrical distortions of projected images in real‐time have been developed. The deformation of the displayed 3‐D images was significantly reduced by the distortion compensation, and the displayed 3‐D images had a resolution of 182 (H) × 140 (V) pixels and a viewing angle of 24.5°.  相似文献   

4.
Abstract— A high‐resolution autostereoscopic 3‐D projection display with a polarization‐control space dividing the iris‐plane liquid‐crystal shutter is proposed. The polarization‐control iris‐plane shutter can control the direction of stereo images without reducing the image quality of the microdis‐play. This autostereoscopic 3‐D projection display is 2‐D/3‐D switchable and has a high resolution and high luminance. In addition, it has no cross‐talk between the left and right viewing zones, a simple structure, and the capability to show multi‐view images.  相似文献   

5.
Abstract— Research described in this paper encompasses the design and building of glasses‐free (autostereoscopic) displays that utilize a direct‐view liquid‐crystal display whose backlight is provided by a projector and novel steering optics. This is controlled by the output of a multi‐user head‐position tracker. As the displays employ spatial multiplexing on a liquid‐crystal‐display screen, they are inherently 2‐D/3‐D switchable with 2‐D being achieved by simply displaying the same image in the left and right channels. Two prototypes are described in this paper; one incorporating a holographic projector and the other a conventional LCOS projector. The LCOS projector version addresses the limitations of brightness, cross‐talk, banding in the images, and laser stability that occur in the holographic projector version. The future development is considered and a comparison between the prototypes and with other 3‐D displays is given.  相似文献   

6.
Abstract— An autostereoscopic 3‐D display suitable for the mobile environment is prototyped and evaluated. First, the required conditions for a 3‐D display in a mobile environment are considered, and the three major requirements are clarified: small size, viewing‐position flexibility, and application support. An application of a mobile‐type 3‐D display should be different from that of a large‐sized 3‐D display because a mobile‐type 3‐D display cannot realize the feeling of immersion while large‐sized 3‐D displays can realize it easily. From this assumption, it is considered that it is important to realize the feeling to handle a 3‐D image. Three types of 3‐D displays are developed to satisfy these requirements. They are subjectively evaluated to confirm their attractiveness. Results of the tests show that intuitive interaction can increase the reality of the 3‐D image in the sense of unity and also can improve the solidity and depth impression of the 3‐D image.  相似文献   

7.
Abstract— The observers' 3‐D viewing experience when the way the content is created and shown on an autostereoscopic 3‐D display alternate is evaluated. The observer's depth impression, and the perceived contour accuracy and image naturalness or peskiness of the content shown on a 3‐D display, has been investigated. In addition, the consequences of the way the content is created to the results from the optical characterization for the same display have been studied. The alternation of the content was realized in two different ways. Firstly, the number of views for creating the image was varied. Two, five, and 14 views were used; the main focus being on testing the same display and treating it as an ordinary two‐view and a 14‐view display with inter‐sub‐view crosstalk. Also, the intermediate condition where five views with non‐uniform view‐specific crosstalk were used has been investigated. Secondly, the way the content is created was varied by using images with computer‐generated content and photos. The effect of these parameters on viewing experience as such and especially the effect of 3‐D crosstalk on the viewing experience were studied.  相似文献   

8.
Abstract— Flat‐panel 2‐D/3‐D autostereoscopic displays are now being commercialized in a variety of applications, each with its own particular requirements. The autostereoscopic display designer has two key considerations to address in order to meet customer needs — the optical output of the display (defined by the output window structure) and the choice of optical components. Window structure determines 3‐D image resolution, achievable lateral and longitudinal viewing freedom, crosstalk, and 3‐D fringe contrast. Optical‐component selection determines the quality of the imaging of such windows, viewing distances, device ruggedness, thickness, and brightness. Trade‐offs in window design are described, and a comparison of the leading optical component technologies is given. Selection of Polarisation Activated Microlenses? architectures for LCD and OLED applications are described. The technology delivers significant advantages particularly for minimising nominal viewing distances in high pixel density panels and optimizing device ruggedness while maintaining display brightness.  相似文献   

9.
Abstract— To estimate the qualified viewing spaces for two‐ and multi‐view autostereoscopic displays, the relationship between image quality (image comfort, annoying ghost image, depth perception) and various pairings between 3‐D cross‐talk in the left and right views are studied subjectively using a two‐view autostereoscopic display and test charts for the left and right views with ghost images due to artificial 3‐D cross‐talk. The artificial 3‐D cross‐talk was tuned to simulate the view in the intermediate zone of the viewing spaces. It was shown that the stereoscopic images on a two‐view autostereoscopic display cause discomfort when they are observed by the eye in the intermediate zone between the viewing spaces. This is because the ghost image due to large 3‐D cross‐talk in the intermediate zone elicits different depth perception from the depth induced by the original images for the left and right views, so the observer's depth perception is confused. Image comfort is also shown to be better for multi‐views, especially the width of the viewing space, which is narrower than the interpupillary distance, where the parallax of the cross‐talking image is small.  相似文献   

10.
Abstract— The wide‐viewing freedom often requested by users of autostereoscopic displays can be delivered by spatial multiplexing of multiple views in which a sequence of images is directed into respective directions by a suitable autostereoscopic optical system. This gives rise to two important design considerations — the optical efficiency and the resolution efficiency of the device. Optical efficiency is particularly important in portable devices such as cell phones. A comparison is given between lens and barrier systems for various spatial multiplexing arrangements. Parallax‐barrier displays suffer from reduced optical efficiency as the number of views presented increases whereas throughput efficiency is independent of the number of views for lens displays. An autostereoscopic optical system is presented for the emerging class of highly efficient polarizer‐free displays. Resolution efficiency can be evaluated by investigating quantitative and subjective comparisons of resolution losses and pixel appearance in each 3‐D image. Specifically, 2.2‐in.‐diagonal 2‐D/3‐D panel performance has been assessed using Nyquist boundaries, human‐visual contrast‐sensitivity models, and autostereoscopic‐display optical output simulations. Four‐view vertical Polarization‐Activated Microlens technology with either QVGA mosaic or VGA striped pixel arrangements is a strong candidate for an optimum compromise between display brightness, viewing angle, and 3‐D pixel appearance.  相似文献   

11.
In order to investigate visual experience for watching the autostereoscopic three‐dimensional (3D) projection display, we conduct a subjective evaluation experiment by a questionnaire when viewing video clips. Factor analysis is adopted to classify the evaluation items for the perpetual constructs of visual experience. Then a mixed design with repeated measurement analysis of variance with dimension and display duration as factors is carried out on the evaluation data to check the factorial effects and interactions for statistical significance. The results of factor analysis extract five factors including visual comfort, image quality, distortion, naturalness, and presence, which can be used as comprehensive indicators to evaluate the autostereoscopic 3D projection display. The results of analysis of variance indicate that image quality, which is used to assess two‐dimensional contents, is no longer applicable. It is necessary to give consideration to depth when evaluating 3D visual experience. Although 3D scenes enhance the overall subjective performance such as naturalness and presence, the health issues and stereoscopic distortion related to the introduction of depth cannot be ignored.  相似文献   

12.
Abstract— This paper describes the construction and operation of four 3‐D displays in which each display produces two images for each eye and thus fits into the category of projection‐based binocular stereoscopic displays. The four 3‐D displays described are pico‐projector‐based, liquid‐ crystal—on—silicon (LCOS) conventional projector‐based, 120‐Hz digital‐light‐processor (DLP) projector‐ based, and the HELIUM3D system. In the first three displays, images are produced on a direct‐view LCD whose conventional backlight is replaced with a projection illumination source that is controlled by a multi‐user head tracker; novel steering optics direct the projector output to regions referred to as exit pupils located at the viewers' eyes. In the HELIUM3D display, the image information is supplied by a horizontally scanned, fast, light valve whose output is controlled by a spatial light modulator (SLM) to direct images to the appropriate viewers' eyes. The current statu s and the multimodal potential of the HELIUM3D display are described.  相似文献   

13.
Abstract— Stereoscopic and autostereoscopic projection‐display systems use projector arrays to present stereoscopic images, and each projector casts one parallax image of a stereoscopic scene. Because of the position shift of the projectors, the parallax images have geometric deformation, which influences the quality of the displayed stereoscopic images. In order to solve this problem, a method based on homography is proposed. The parallax images are pre‐transformed before they are projected, and then the stereoscopic images without geometric distortion can be obtained. An autostereoscopic projection‐display system is developed to present the images with and without calibration. Experimental results show that this method works effectively.  相似文献   

14.
A polarization modulated directional backlight autostereoscopic display is proposed and demonstrated. The system consists of the orthogonally polarized backlight, the Fresnel lens array, a light shaping diffuser film, and a liquid crystal display (LCD) with a microphase retardation film. The autostereoscopic image pair carried by the directional light with different polarization directions is simultaneously projected to different spatial directions. The simulation and experimental results show that the directional projection of parallax images is realized for a high-quality autostereoscopic display with large viewing angle and continuous viewing volume, hence making it suitable for practical applications.  相似文献   

15.
Abstract— A circular camera system employing an image‐based rendering technique that captures light‐ray data needed for reconstructing three‐dimensional (3‐D) images by using reconstruction of parallax rays from multiple images captured from multiple viewpoints around a real object in order to display a 3‐D image of a real object that can be observed from multiple surrounding viewing points on a 3‐D display is proposed. An interpolation algorithm that is effective in reducing the number of component cameras in the system is also proposed. The interpolation and experimental results which were performed on our previously proposed 3‐D display system based on the reconstruction of parallax rays will be described. When the radius of the proposed circular camera array was 1100 mm, the central angle of the camera array was 40°, and the radius of a real 3‐D object was between 60 and 100 mm, the proposed camera system, consisting of 14 cameras, could obtain sufficient 3‐D light‐ray data to reconstruct 3‐D images on the 3‐D display.  相似文献   

16.
Abstract— A method to increase the viewing resolution of an autostereoscopic display without increasing the density of microlenses is proposed. Multiple projectors are used for the projection images to be focused and overlaid on a common plane in the air behind the microlens array. The multiple overlaid projection images yield multiple light spots inside the region of each elemental lenslet of the microlens array. This feature provides scalable high‐resolution images by increasing the number of projectors. Based on the proposed method, a prototype display that includes 15 projectors was designed and built. 3‐D images were successfully reproduced on the prototype display with full parallax and a wide viewing angle of 70°.  相似文献   

17.
Abstract— Autostereoscopic and polarization‐based stereoscopic 3‐D displays recreate 3‐D images by providing different images in the two eyes of an observer. This aim is achieved differently for these two families of 3‐D displays. It is shown that viewing‐angle measurements can be applied to characterize both types of displays. Viewing‐angle luminance measurements are made at different locations on the display surface for each view emitted by the display. For autostereoscopic displays, a Fourier‐optics instrument with an ultra‐high‐angular‐resolution VCMaster3D is used. For polarization‐based displays, a standard Fourier‐optics instrument with additional glass filters is used. Then, what will be seen by an observer in front of the display is computed. Monocular and binocular quality criteria (left‐ and right‐eye contrast, 3‐D contrast) was used to quantify the ability to perceive depth for any observer position. Qualified monocular and binocular viewing spaces (QMVS and QBVS) are deduced. Precise 3‐D characteristics are derived such as maximum 3‐D contrast, optical viewing freedom in each direction, color shifts, and standard contrast. A quantitative comparison between displays of all types becomes possible.  相似文献   

18.
A metric of the 3D image quality of autostereoscopic displays based on optical measurements is proposed. This metric uses each view's luminance contrast, which is defined as the ratio of maximum luminance at each viewing position to total luminance at that position. Conventional metrics of the autostereoscopic display based on crosstalk, which uses “wanted” and “unwanted” lights. However, in case of the multiple‐views‐type autostereoscopic displays, it is difficult to distinguish exactly which lights are wanted lights and which are unwanted lights. This paper assumes that the wanted light has a maximum luminance at the good stereoscopic viewing position, and the unwanted light also has a maximum luminance at the worst pseudo‐stereoscopic viewing position. By using the maximum luminance that is indexed by view number of the autostereoscopic display, the proposed method enables characterizing stereoscopic viewing conditions without using wanted/unwanted light. A 3D image quality metric called “stereo luminance contrast,” the average of both eyes' contrast, is proposed. The effectiveness of the proposed metric is confirmed by the results of optical measurement analyses of different types of autostereoscopic displays, such as the two‐view, scan‐backlight, multi‐view, and integral.  相似文献   

19.
Abstract— The development of a multi‐user stereoscopic display that does not require the use of special glasses (autostereoscopic), and that enables a large degree of freedom of viewer movement and requires only the minimum amount of information (a stereo pair) for the displays described. The optics comprise an RGB holographic laser projector that is controlled by the output of a multi‐target head‐position head tracker, an optical assembly that converts the projector output into steerable exit pupils, and a screen assembly comprising a single liquid‐crystal display (LCD) and image multiplexing screen. A stereo image pair is produced on the LCD by simultaneously displaying left and right images on alternate rows of pixels. Novel steering optics that replace the conventional backlight are used to direct viewing regions, referred to as exit pupils, to the appropriate viewers' eyes. The results obtained from the first version of the display, where the illumination source consists of several thousand white LEDs, are given and the current status of the latest prototype being constructed on the basis of these results is described. The work indicates that a laser‐based head‐tracking display can provide the basis for the next generation of 3‐D display.  相似文献   

20.
Many people complain about visual fatigue arising from viewing three‐dimensional (3D) displays. This paper investigates relationship between visual fatigue and viewers' phoria for viewing autostereoscopic 3D displays. Visual fatigue is evaluated through subjective symptoms with a questionnaire and optometric indicators comprising fusion range as well as accommodation convergence/accommodation (AC/A) ratio to measure the variation in visual functions. A screening test is adopted to divide the subjects into two groups based on whether they suffer from phoria. Then a 2 × 2 × 2 mixed design experiment is conducted with display type, viewing stage, and visual state as factors to examine visual fatigue during viewing session. The results show that phoria subjects obtain more severe visual fatigue than normal on subjective evaluation. The normal subjects reveal a more marked difference with phoria in fusion range and AC/A ratio after viewing 3D video clip. Fusion range can significantly distinguish between the two‐dimensional (2D) and 3D condition as well as between the pre‐ and post‐viewing stages. The sensitivity and specificity of fusion range is higher than AC/A ratio with respect to viewing of 3D contents, so it is more appropriate as an optometric indicator of visual fatigue for autostereoscopic 3D displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号