首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first InGaN multiple quantum well laser diodes produced by molecular beam epitaxy are reported. Ridge waveguide lasers have been demonstrated at room temperature under pulsed current injection conditions. The lasers emit at a wavelength of approximately 400 nm with a spectral line-width of less than 0.2 nm, and a threshold current density of /spl sim/30 kA cm/sup -2/.  相似文献   

2.
3.
AlGaInP-based quantum-well laser diodes operating at wavelengths near 680 nm have been grown by all solid source molecular beam epitaxy (SSMBE). The lowest room temperature threshold current densities obtained from shallow ridge structures were 300 A/cm/sup 2/ and 330 A/cm/sup 2/ for pulsed and continuous wave operation, respectively. The dependences of the differential quantum efficiency and threshold current density on the cavity length were also studied in this preliminary SSMBE work. The internal quantum efficiency of 87-89% and the internal losses of 7-10 cm/sup -1/ were obtained.  相似文献   

4.
Electrical characteristics ofp-Ge/n-GaAs heterojunctions on GaAs(l00) grown by molecular beam epitaxy (MBE) have been investigated. Thep-type Ge layer was produced by intentionally doping with Ga atoms, in addition to the diffusion of Ga atoms from the surface of the GaAs layer. The best ideality factor of 1.04 over six decades of the forward current and the lowest reverse current density of the order of 10−6 A/cm2 were obtained for diodes with Ge grown at 500° C. The ideality factor increased slightly up to 1.12 when the operating temperature was decreased to 77 K. By studying the temperature dependence of the forward current, the conduction band discontinuity has been estimated to be 40 ± 10 meV. The suppression of Ga diffusion into the Ge film and its effect on pn-junction characteristics were also studied by growing a thin Ge film on GaAs at less than 300° C prior to the normal Ge film growth at 500° C.  相似文献   

5.
The band gap of lead-europium-telluride (Pb1-x EuxTe) was determined from room temperature optical absorption measurements and increases as dEg/dx = 3.5 eV for x ≤ 0.044. Eu atoms bond strongly to a PbTe surface during MBE growth and have a small diffusion coefficient (<1 x 10−16 cm /sec at 370°C). The lattice constant of Pb1-x, Eux Te is a nonlinear function of composition, and lattice-matched growth of Pb1-x Eux Sey Te1-y, on PbTe is demonstrated. Preliminary studies of the electrical properties of Pb1-x Eux Te indicate compensation of n-type (Bi) and p-type (Tl) dopants. These results indicate that Pb1-x Eux Sey Te1-y, may be useful for obtaining diode lasers which emit at wavelengths shorter than those available from Pb1-x, Snx Te.  相似文献   

6.
Molecular beam epitaxy technique has been used to grow double layer heterostructure mercury cadmium telluride materials on silicon substrates for infrared detection in the mid-wavelength infrared transmission band. Test structures containing square diodes with variable areas from 5.76 × 10−6 cm2 to 2.5×10−3 cm2 are fabricated on them. The p on n planar architecture is achieved by selective arsenic ion implantation. The absorber layer characteristics for the samples studied here include a full width at half maximum of 100–120 arcsec from x-ray rocking curve, the electron concentration of 1−2 × 1015 cm−3 and mobility 3−5 × 104 cm2/V-s, respectively at 80 K from Hall measurements. The minority carrier lifetime measured by photoconductive decay measurements at 80 K varied from 1 to 1.2 μsec. A modified general model for the variable area I–V analysis is presented. The dark current-voltage measurements were carried out at 80 K and an analysis of the dependence of zero-bias impedance on the perimeter/area ratio based on bulk, surface generation-recombination, and lateral currents are presented. The results indicate state-of-the art performance of the diodes in the midwavelength infrared region.  相似文献   

7.
Ga47In53As films have been grown by molecular beam epitaxy (MBE) on InP substrates. The unintentionally doped material has a free electron concentration of 8 × 1015cm-3 and exhibits sharp (~5 meV linewidth) exciton recombination in the 4K photoluminescence. The films were grown on (100) InP surfaces which were thermally cleaned in the arsenic beam. The effects of the substrate temperature during growth, the Ga to In flux ratio and the group V to group III flux ratio on the 4K photoluminescence are reported.  相似文献   

8.
AlGaAs/GaAs-distributed feedback (DFB) lasers with oxide-stripe structure were fabricated by a two-step molecular beam epitaxial (MBE) growth for the first time. The large coupling coefficient of 90 cm-1and the threshold current as low as 165 mA at room temperature were obtained with the second-order gratings. The characteristic temperature T0was as high as 210 K. Single longitudinal-mode oscillation was observed up toI/I_{th} = 1.5and from 0 to 50°C without any mode hopping. The wavelength variation from device to device was ±5 Å. The dependence of the coupling coefficient on the device structure was calculated, and it was shown that MBE is much more advantageous than LPE to enhance the coupling coefficient.  相似文献   

9.
Growth of single crystal wurtzite cadmium sulfide on CdTe(111)B substrates has been achieved using molecular beam epitaxy. Reflection high-energy electron diffraction (RHEED) indicates smooth surface morphology for several hundreds of nanometers after nucleation. X-ray diffraction measurements confirm the crystalline orientation to be [0001] in the growth direction. X-ray photoelectron spectroscopy (XPS) indicates mostly stoichiometric CdS layers and the existence of a reaction at the interface. Sulfur incorporation into CdTe for various S fluxes has been investigated by Auger electron spectroscopy (AES). High-resolution TEM images of the interface between such epilayers were recorded. During the growth In was used as an in-situ dopant. The concentration and uniformity of In was determined by secondary ion mass spectrometry. Indium profiles were obtained for concentrations ranging from 5 × 1017 to 1.4 × 1021 cm−3. The experimental concentration agrees well with the variation expected from the In flux.  相似文献   

10.
We report on the use of a new, valved, solid phosphorus cracker source for the growth of phosphides by molecular beam epitaxy. The source avoids the relatively high expense and high level of toxicity associated with the use of phosphine gas and eliminates the problems commonly encountered in using conventional solid phosphorus sources. The source has been used to grow GaInP and AlInP lattice-matched to GaAs substrates. The quality of the materials reported here is comparable to the best materials grown by other techniques. Photoluminescence and Raman scattering measurements indicate that the resulting material has a high degree of disorder on the group III sublattice. The new source is shown to be a reliable and attractive alternative for the growth of these phosphide materials.  相似文献   

11.
Electrical properties of molecular beam epitaxy “in-situ” grown Ag on (001) GaAs Schottky diodes were investigated. X-ray rocking curves show a (111) main peak for “in-situ” Ag grown at low temperature. During annealing, the main peak of Ag rotates from (111) to (200) to closely match that of the underlying GaAs lattice. The barrier height, 0.991 eV (determined by C-V measurement), decreases whereas doping concentration increases with increasing annealing temperature. Interdiffusion and the formation of some compound phases were also observed during annealing. A simple model, in which Ga dissociates from GaAs resulting in an increase in uncompensated ions at the metal-semiconductor interface, is proposed to explain the observation that carrier concentrations increase after annealing.  相似文献   

12.
We present the characteristics of uniformly doped silicon Esaki tunnel diodes grown by low temperature molecular beam epitaxy (Tgrowth=275°C) using in situ boron and phosphorus doping. The effects of ex situ thermal annealing are presented for temperatures between 640 and 800°C. A maximum peak to valley current ratio (PVCR) of 1.47 was obtained at the optimum annealing temperature of 680°C for 1 min. Peak and valley (excess) currents decreased more than two orders of magnitude as annealing temperatures and times were increased with rates empirically determined to have thermal activation energies of 2.2 and 2.4 eV respectively. The decrease in current density is attributed to widening of the tunneling barrier due to the diffusion of phosphorus and boron. A peak current density of 47 kA/cm2 (PVCR=1.3) was achieved and is the highest reported current density for a Si-based Esaki diode (grown by either epitaxy or by alloying). The temperature dependence of the current voltage characteristics of a Si Esaki diode in the range from 4.2 to 325 K indicated that both the peak current and the excess current are dominated by quantum mechanical tunneling rather than by recombination. The temperature dependence of the peak and valley currents is due to the band gap dependence of the tunneling probability  相似文献   

13.
Measurements on low-temperature GaAs epitaxial layers (LT-GaAs) grown by molecular beam epitaxy and migration enhanced epitaxy showed that the excess arsenic incorporated during growth played a crucial role in determining their electrical properties. The electrical transport in LT-GaAs grown by a standard molecular beam epitaxy proceeded mainly via a hopping process, which showed a higher activation energy and onset temperature than those usually observed in lightly doped semiconductors. Using migration enhanced epitaxy to grow LT-GaAs, we were able to substantially reduce the density of As-rich defects and to achieve a good Hall mobility in Be-doped LT-GaAs. The study presented here indicates that, with controlled excess arsenic incorporation during growth, LT-GaAs can vary in a range of conduction properties and thus can be engineered for different device applications.  相似文献   

14.
Laser emission is reported for the first time from a 10 monolayer-wide highly strained (3.2%) InAs single quantum well confined by Ga/sub 0.47/In/sub 0.53/As layers. At 80 K the emission spectrum of broad-area laser diodes is centred at 1.836 mu m, the threshold current-density is approximately 500 A/cm/sup 2/ and the characteristic temperature is T/sub 0/ approximately=30 K. CW operation is achieved up to 110 K with narrow-stripe devices but at shorter wavelength, due to increased losses and filling of the quantum-well energy levels.<>  相似文献   

15.
分析了非掺GaSb材料及在GaAs衬底上用分子束外延生长掺杂Te的GaSb薄膜材料的缺陷特性,主要应用正电子湮没多谱勒展宽谱方法,并结合原子力显微镜和X射线衍射测试进行.多谱勒展宽谱研究表明,采用分子束外延法生长的掺杂Te的n型半导体GaSb薄膜材料的S参数比体材料小,所得缺陷主要是单空位与间隙原子,而几乎无复合体的缺陷类型.  相似文献   

16.
Using elementary Se we grew Se-doped GaAs films on GaAs (111), (411), (711) and (100) substrates by molecular beam epitaxy. The films grown on all the high-index substrates showed n-type conduction and the maximum carrier concentration reached 2.1 × 1019 cm−3 for the film grown on the (411)B substrate. The carrier concentration began to saturate at a Se concentration near 1019 cm−3 but continued to increase up to a Se concentration of 2 × 1020 cm−3. Above 2 × 1020 cm−3 Se concentration, slow reduction of the carrier concentration was observed. We obtained excellent surface morphology when n-type GaAs films were grown on (411)A and (711)B substrates even at a Se concentration of 7 × 1020 cm−3.  相似文献   

17.
A novel heterojunction phototransistor (HPT) structure is proposed using two base regions such that the emitter-base depletion region is located in the wide-gap material. Very small area HPTs have been fabricated on semi-insulating substrates. Maximum current gain is ? = 300. The response time, with rise time as short as 250 ps and FWHM = 320 ps, has been obtained using a picosecond pulse dye laser.  相似文献   

18.
The fabrication of high-quality focal plane arrays from HgCdTe layers grown by molecular beam epitaxy (MBE) requires a high degree of lateral uniformity in material properties such as the alloy composition, doping concentration, and defect density. While it is well known that MBE source flux nonuniformity can lead to radial compositional variation for rotating substrates, we have also found that composition can be affected significantly by lateral variations in substrate temperature during growth. In diagnostic experiments, we systematically varied the substrate temperature during MBE and quantified the dependence of HgCdTe alloy composition on substrate temperature. Based on these results, we developed a methodology to quickly and nondestructively characterize MBE-grown layers using postgrowth spatial mapping of the cutoff wavelength from the Fourier transform infrared (FTIR) transmission at 300 K, and we were able to obtain a quantitative relationship between the measured spatial variations in cutoff and the substrate temperature lateral distribution during growth. We refined this methodology by more directly inferring the substrate temperature distribution from secondary ion mass spectroscopy (SIMS) measurements of the As concentration across a wafer, using the fact that the As incorporation rate in MBE-grown p-type layers is highly sensitive to substrate temperature. Combining this multiple-point SIMS analysis with FTIR spatial mapping, we demonstrate how the relative contributions from flux nonuniformity and temperature variations on the lateral composition uniformity can be separated. This capability to accurately map the lateral variations in the substrate temperature has been valuable in optimizing the mounting and bonding of large substrates for MBE growth, and can also be valuable for other aspects of MBE process development.  相似文献   

19.
Schottky-barrier varactor and mixer diodes have been made from Ge-doped GaAs layers grown by molecular beam epitaxy. A microstrip parametric amplifier circuit incorporating a hyperabrupt varactor diode has given a noise temperature of 120 K and bandwidth of 180 MHz at 15 dB gain when pumped at 34 GHz, and a mixer diode mounted in a cryogenic receiver circuit had an s.s.b. noise temperature of 180 K at 90 GHz.  相似文献   

20.
A GaAs/Al/sub x/Ga/sub 1-x/As multiple quantum well laser with an electrical modulation bandwidth exceeding 15 GHz has been fabricated. Optimised design of the waveguide, including development of high Al mole fraction (x=0.8) cladding layers, together with a coplanar electrode geometry, has resulted in a vertically compact laser structure suitable for integration.<>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号