首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid magnetic drug nanocarriers are prepared via a self-assembly process of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (p(MAA-g-EGMA)) on growing iron oxide nanocrystallites. The nanocarriers successfully merge together bio-repellent properties, pronounced magnetic response, and high loading capacity for the potent anticancer drug doxorubicin (adriamicin), in a manner not observed before in such hybrid colloids. High magnetic responses are accomplished by engineering the size of the magnetic nanocrystallites (~13.5 nm) following an aqueous single-ferrous precursor route, and through adjustment of the number of cores in each colloidal assembly. Complementing conventional magnetometry, the magnetic response of the nanocarriers is evaluated by magnetophoretic experiments providing insight into their internal organization and on their response to magnetic manipulation. The structural organization of the graft-copolymer, locked on the surface of the nanocrystallites, is further probed by small-angle neutron scattering on single-core colloids. Analysis showed that the MAA segments selectively populate the area around the magnetic nanocrystallites, while the poly(ethylene glycol)-grafted chains are arranged as protrusions, pointing towards the aqueous environment. These nanocarriers are screened at various pHs and in highly salted media by light scattering and electrokinetic measurements. According to the results, their stability is dramatically enhanced, as compared to uncoated nanocrystallites, owing to the presence of the external protective PEG canopy. The nanocarriers are also endowed with bio-repellent properties, as evidenced by stability assays using human blood plasma as the medium.  相似文献   

2.
3.
Macroporous silica-alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of mesopores has been verified by X-ray diffraction. The surface areas of the samples vary between 676 and 1038 m2 g−1, with the highest value in the sample with Si/Al = 48.  相似文献   

4.
5.
有机-无机杂化介孔薄膜能实现有机和无机组分的功能互补,具有良好的综合性能,成为近年来功能材料研究领域的熟点之一.综述了近年来有机-无机杂化介孔薄膜的制备方法、介孔的形成机理及控制和介孔薄膜的应用研究,指出了当前研究中存在的问题,展望了今后的发展趋势.  相似文献   

6.
7.
以醇铝为原料,利用三种不同类型的模板剂对氧化铝的孔径进行调节,对各种模板剂的作用机理进行了初步探讨.研究结果表明:不同模板剂获得的介孔氧化铝的孔道结构基本一致,均为蠕虫状结构,模板剂的不同对介孔氧化铝孔径的影响较大,未加模板剂直接由溶胶-凝胶法获得的介孔氧化铝孔径分布较窄,孔径偏小;加入离子型模板剂能够形成孔径分布窄、孔径增大的介孔材料;加入非离子型模板剂则形成孔径更大,但孔径分布较宽的介孔氧化铝.  相似文献   

8.
Superparamagnetic nanocarriers with tunable pH dependence of the surface charge are designed by a simple co-precipitation method. By exploiting electrostatic interactions, cationic or anionic payloads can be adsorbed and desorbed depending on the pH. On three different resulting nanocarrier systems, experiments of loading and release of gold nanoparticles as well as effective siRNA loading and in vitro delivery on human cells are performed.  相似文献   

9.
以十二烷基硫酸钠(SDS)为模板剂,正硅酸乙酯(TEOS)和N-三甲氧基硅丙基-N,N,N-三甲基氯化铵(TSPMNC)为硅源,以NaOH为催化剂,合成出带有季铵荷正电基团的有序介孔材料(QAS)。采用XRD,TGA、BET、SEM,XPS、TEM、FT-IR等手段对产品结构进行了表征和分析。结果表明,产品具有较为均一的六方介孔结构,孔径约为3.5nm,产品中季铵荷电基团的含量约为1.41mmol/g。  相似文献   

10.
介孔TiO2是一种新型高效的光催化剂,综述了介孔TiO2的各种制备方法及其相关材料性能和在光催化降解方面的应用。分析了目前介孔TiO2材料合成和应用中存在的问题,展望了该领域的研究前景。  相似文献   

11.
超声化学法制备介孔复合材料的研究   总被引:2,自引:0,他引:2  
将超声技术引入介孔材料的合成中是近年来研究的热点 ,用超声诱导的方法可大大缩短合成时间 ,又可获得性能优良的介孔复合材料。从超声化学的基本原理和特点出发 ,主要介绍了超声法在制备硅基介孔材料和非硅基介孔材料方面的应用 ,并对超声化学法在该领域的发展前景进行了展望。  相似文献   

12.
Ordered, hexagonal, mesoporous metal (Ti, Zr, V, Al)-phosphonate materials with microporous crystalline walls are synthesized through a microwave-assisted procedure by using triblock copolymer F127 as the template. Corresponding metal chlorides and ethylene diamine tetra(methylene phosphonic acid) are chosen as the inorganic precursors and the coupling molecule, respectively. X-ray diffractometry, transmission electron microscopy, N(2) sorption, and thermogravimetry measurements confirm that the obtained metal phosphonates possess a hierarchically porous structure with pore sizes of 7.1-7.5 nm and 1.3-1.7 nm for mesopores and micropores, respectively, and the metal phosphonate materials are thermally stable up to around 450 °C with the pore structure and hybrid framework well preserved. Magic angle spinning NMR, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses indicate that the phosphonate groups are homogenously incorporated into the hybrid framework of the obtained materials. For the first time, the mesoporous hybrid materials are employed as the stationary phase in open tubular capillary electrochromatography technique for the separation of various substances including acidic, basic, and neutral compounds. These materials show good selectivity and reproducibility for this application.  相似文献   

13.
Hollow mesoporous silica nanoparticles (HMSNs) have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties, large specific surface area and facile functionalization, especially made into intelligent drug delivery systems (DDSs) for cancer therapy. HMSNs are employed to transport traditional anti-tumor drugs, which can solve the problems of drugs with instability, poor solubility and lack of recognition, etc., while significantly improving the anti-tumor effect. And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment. Actually, HMSNs-based DDSs have developed relatively mature in recent years. This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS, as well as its degradation, different stimuli-responses, targets and combination therapy. These versatile intelligent nanoparticles show great potential in clinical aspects.  相似文献   

14.
Magnetic nanocomposites with well-defined mesoporous structures, shapes, and tailored properties are of immense scientific and technological interest. This review article is devoted to the progress in the synthesis and applications of magnetic mesoporous materials. The first part briefly reviews various general methods developed for producing magnetic nanoparticles (NPs). The second presents and categorizes the synthesis of magnetic nanocomposites with mesoporous structures. These nanocomposites are broadly categorized into four types: monodisperse magnetic nanocrystals embedded in mesoporous nanospheres, microspheres encapsulating magnetic cores into perpendicularly aligned mesoporous shells, ordered mesoporous materials loaded with magnetic NPs inside the porous channels or cages, and rattle-type magnetic nanocomposites. The third section reviews the potential applications of the magnetic nanocomposites with mesoporous structures in the areas of heath care, catalysis, and environmental separation. The final section offers a summary and future perspectives on the state-of-the art in this area.  相似文献   

15.
介孔有机-无机复合氧化硅空心球(MOSs)在碱性条件下以反向胶束为模板经过正硅酸乙酯(TEOS)和1,2-双(三乙氧基甲硅烷基)乙烷(BTSE)共缩合被成功合成, 并通过不同手段对样品的结构和性能进行表征。MOSs用于去除挥发性有机物(VOCs), 研究其对水蒸气、正己烷、甲苯和92#汽油的静态吸附性能, 并以商业硅胶(SG)和活性炭(AC)为参考。实验结果发现, 初始BTSE/(BTSE+TEOS) 摩尔比为10%时, (MOS-10%)的样品具有均匀的中空介观结构和最大的VOCs吸附容量(1.28 g·g-1正己烷, 1.25 g·g-1甲苯和1.14 g·g-1 92#汽油), 静态水蒸气吸附量最小(0.630 g·g-1)。通过穿透曲线评估单一组分VOC(正己烷或甲苯)在MOS-10%上的动态吸附行为, 动态正己烷和甲苯吸附结果以及高湿度条件下的正己烷吸附性能表明, 与商业吸附剂相比, MOS-10%具有最佳的穿透时间、吸附能力和疏水性。对于二元组分同时吸附(正己烷和甲苯), MOS-10%的正己烷吸附性能优于甲苯。介孔有机-无机复合氧化硅空心球的动态VOCs吸附容量较大归因于有机基团、表面积和孔体积的共同作用。MOSs的VOCs去除能力强和可回收性优良, 显示出巨大的VOCs捕获潜力。  相似文献   

16.
Mesoporous Au films consisting of a network of interconnected Au ligaments around ultra-large pores were found to exhibit a promising electrocatalytic activity towards sluggish reactions. Mesoporous Au films with pore sizes up to 25 nm were successfully fabricated using a polymeric micelle approach. A superior catalytic activity of the mesoporous Au films towards methanol oxidation was confirmed, which was thoroughly analyzed and compared with that of other Au materials. An intrinsic investigation on the high catalytic activity revealed that the superior performance of the as-prepared mesoporous Au film was related to its unique atomic structures around the mesopores with well-crystallized facets and several step/kink sites on the Au surfaces. These findings showcase a strategic and feasible design for preparing highly active Au-based catalysts that could be used as promising candidates in electrocatalytic applications.
  相似文献   

17.
Herein we report the first kinetic study of the intrachannel wall phase-transition of amorphous titania to nanocrystalline anatase for periodic mesoporous titania thin films, monitored by time-resolved in situ high-temperature X-ray diffraction. Structural transformations associated with the phase transition are further probed by high-resolution scanning electron microscopy and transmission electron microscopy. The model found to be most consistent with the kinetic data involves 1D diffusion-controlled growth of nanocrystalline anatase within the spatial confines of the channel walls of the mesostructure. The observation of anisotropic, rod-shaped anatase nanocrystals preferentially aligned along the channel axis implies that the framework of the liquid-crystal-templated mesostructure guides the crystal growth.  相似文献   

18.
A glucose-mediated drug delivery system would be highly satisfactory fordiabetes diagnosis since it can intelligently release drug based on blood glucose levels.Herein,a glucose-responsive drug delivery system by integrating glucose-responsivepoly(3-acrylamidophenylboronic acid)(PAPBA)functionalized hollow mesoporous silicananoparticles(HMSNs)with transcutaneous microneedles(MNs)has been designed.Thegrafted PAPBA serves as gatekeeper to prevent drug release from HMSNs atnormoglycemic levels.In contrast,faster drug release is detected at a typicalhyperglycemic level,which is due to the change of hydrophilicity of PAPBA at highglucose concentration.After transdermal administration to diabetic rats,an effectivehypoglycemic effect is achieved compared with that of subcutaneous injection.Theseobservations indicate that the designed glucose-responsive drug delivery system has apotential application in diabetes treatment.  相似文献   

19.
20.
介孔硅基有机无机杂化材料的研究进展   总被引:4,自引:0,他引:4  
介孔硅基有机无机杂化材料(PMOs)是一种分子水平上有机组分与无机组分在孔壁中杂化的材料, 这类材料有着许多独特的性质:有机官能团均匀分布在孔壁中且不堵塞孔道, 有利于客体分子的引入和扩散; 骨架中的有机官能团可以在一定程度上调节材料的物化性质, 如机械性能, 亲/疏水性; 可以同时实现对孔道和孔壁功能性的调变. 正因如此, PMOs已成为当今材料科学领域的一个研究热点. 本文综述了PMOs 的最新研究进展, 包括其合成方法、表征及其在催化、吸附、分离、光电等领域的应用. 最后展望了该类材料的发展前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号