首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以活性炭(AC)为载体,采用浸渍法制备了过渡金属负载型吸附剂。考察了浸渍液、吸附温度对吸附剂脱除低浓度二硫化碳(CS2)性能的影响,并对吸附剂的再生性能进行了考察。通过XRD、N_2-物理吸附、FE-SEM对吸附剂进行了表征。结果表明,K_2CO_3处理能够有效增加AC载体的微孔数量;Ag+在AC表面易被还原成Ag0,降低了其与CS_2的络合作用;Cu(NO_3)_2改性后活性组分为Cu_2O,提高了AC表面软酸性,促进了吸附剂与CS_2的π络合作用。K_2CO_3-Cu(NO_3)_2改性后,吸附剂(CuKAC)脱除CS_2的效果最佳,吸附量达到77.32 mg/g。吸附温度是影响CuKAC吸附剂脱除CS_2性能的重要因素,吸附温度20℃时吸附性能最好。N_2气氛下再生温度200℃时CuKAC的再生率达到100%,10次吸附/再生后吸附剂的吸附能力保持稳定。  相似文献   

2.
采用等体积浸渍法,以硝酸处理后的活性炭(AC-HN)为载体,Ag NO3和Cu(NO3)2为原料制备了Cu/ACHN和Ag/AC-HN吸附剂。研究了浸渍液、焙烧温度、焙烧时间和负载量对吸附剂常温脱除低浓度羰基硫(COS)性能影响,并通过N2物理吸附、FE-SEM、TG-DTG、XRD、FTIR对吸附剂进行了表征。动态吸附结果表明,改性后的吸附剂吸附COS的能力提升。Ag+在AC表面被还原成Ag0。Cu/AC-HN活性组分以Cu2O存在,表现出更佳的吸附能力。Cu(NO3)2改性后,吸附剂比表面积降低,AC原有官能团没有发生变化。焙烧温度对Cu/AC-HN活性组分物相有较大影响。焙烧温度升高,Cu(NO3)2逐渐分解成CuO,CuO被AC还原成Cu2O,350℃时Cu2O的量达到最高。进一步提高温度,Cu2O被还原成Cu0,Cu2O量降低。AC对COS的吸附量为7.5 mg/g。当焙烧温度350℃、焙烧时间1.5 h、铜负载量5%时,Cu/AC-HN吸附COS的效果最好,吸附量达到14.8 mg/g。  相似文献   

3.
采用等体积浸渍法,以硝酸处理后的活性炭(AC-HN)为载体,AgNO3和Cu(NO3)2为原料制备了Cu/AC-HN和Ag/AC-HN吸附剂。研究了浸渍液、焙烧温度、焙烧时间和负载量对吸附剂常温脱除低浓度羰基硫(COS)性能影响,并通过N2物理吸附、FE-SEM、TG-DTG、XRD、FTIR对吸附剂进行了表征。动态吸附结果表明,改性后的吸附剂吸附COS的能力提升。Ag+在AC表面被还原成Ag0。Cu/AC-HN活性组分以Cu2O存在,表现出更佳的吸附能力。Cu(NO3)2改性后,吸附剂比表面积降低,AC原有官能团没有发生变化。焙烧温度对Cu/AC-HN活性组分物相有较大影响。焙烧温度升高,Cu(NO3)2逐渐分解成CuO,CuO被AC还原成Cu2O,350 ℃时Cu2O的量达到最高。进一步增加温度,Cu2O被还原成Cu0,Cu2O量降低。AC对COS的吸附量为7.5mg/g。当焙烧温度350℃、焙烧时间1.5h、铜负载量5%时,Cu/AC-HN吸附COS的效果最好,吸附量达到14.8mg/g。  相似文献   

4.
采用等体积浸渍法制备了以活性炭为载体的Cu/AC吸附剂,并进行了模型柴油中噻吩的吸附脱除性能研究。采用N2吸附、SEM、TEM及XRD技术对吸附剂进行了表征。考察了浸渍时间、负载量、焙烧时间、焙烧温度对吸附脱硫效果的影响,得出吸附剂的最佳制备条件:浸渍时间为12 h,Cu负载量为5%(wt),焙烧温度为400 oC,焙烧时间为2 h。在此条件下制备的吸附剂对模型油中噻吩的脱除率达95.7%。最后对吸附机理进行了初步探讨,一价铜对噻吩的吸附作用较强,可能是通过π键配位作用对噻吩进行脱除的,具体的吸附机理仍待于进一步研究。  相似文献   

5.
制备了KOH改性活性炭吸附剂并用于脱除低浓度羰基硫(COS),利用氮气物理吸附、X射线光电子能谱、CO_2程序升温脱附、傅里叶变换红外光谱对吸附剂进行表征。考察了浸渍液质量分数及吸附条件对改性活性炭脱除COS性能的影响,并进行了再生性能测试。实验结果表明,浸渍液质量分数为10%时吸附剂的穿透吸附量最大,为40. 64 mg/g;在一定范围内,吸附效果与原料气流速成反比,与吸附温度成正比; COS在吸附剂表面反应主要生成了硫酸盐和硫单质;经过4次再生后,10OH/AC吸附剂的穿透吸附量仍达34. 32 mg/g,表明10OH/AC吸附剂具备一定工业应用潜力。  相似文献   

6.
采用浸渍法将甲酸铜与氯化铜前驱体负载到金属有机骨架材料MIL-101载体上,通过改变活化温度和铜盐负载量,制备Cu/MIL-101吸附剂。用XRD、FT-IR、TG、N_2吸附和脱附等表征手段考察材料的结构和性能,测试Cu/MIL-101吸附剂在101.3k Pa、25℃的CO、N_2吸附量。结果表明,制备该吸附剂的最佳活化温度为220℃,最佳铜盐负载量为4mmol·(gMIL-101)~(-1)。铜基改性后的吸附剂CO的吸附量由23.93cm~3·g~(-1)提高到53.55cm~3·g~(-1),N_2的吸附量由5.81cm~3·g~(-1)下降到3.29cm~3·g~(-1),用理想吸附溶液理论IAST模型预测CO/N_2吸附选择性由26提高到2194。吸附剂可在200℃、真空下再生。  相似文献   

7.
采用浸渍法制备了Cu(NO_3)_2改性的活性炭吸附剂,以低浓度硫化氢和氮气混合气为模拟原料气,在固定吸附床上考察了吸附剂制备条件对脱除硫化氢性能的影响。结果表明,浸渍Cu(NO_3)_2能有效改善活性炭对硫化氢的吸附脱硫能力,在Cu(NO_3)_2浸渍浓度为5(wt)%、浸渍时间24h、焙烧温度300℃的条件下,制备的改性活性炭吸附脱硫效果最佳,饱和硫容和脱硫率分别达到55.4 mg·g~(-1)和98.92%,饱和硫容比未经改性的活性炭提高了38.2 mg·g~(-1)。  相似文献   

8.
采用浸渍法制备了MnO_x改性活性炭(MnO_x/AC),用于模拟煤燃烧烟气中的元素态汞的脱除。实验研究了吸附剂的Mn负载量、吸附温度和烟气组分对所制备的改性活性炭的脱汞性能的影响,以及SO_2对活性炭脱汞的抑制作用机理。研究结果表明,当模拟烟气中含有5%(体积) O_2,Mn负载量为14%(质量),吸附温度为150℃时,改性活性炭的平均脱汞效率为97.0%(3 h)。模拟烟气中少量的O_2和微量的HCl、NO均对汞的脱除起促进作用,而微量的SO_2则对汞的脱除有抑制作用。通过吸附后的MnO_x改性活性炭的TG/DTG、XPS和Hg-TPD分析,推测SO2对改性活性炭脱汞的抑制作用是由于其消耗MnO_x中的晶格氧,形成的硫酸盐占据了14Mn/AC表面上的活性位点所致。模拟烟气中微量的NO可以有效降低SO_2对脱汞的抑制作用。  相似文献   

9.
CO2的大量排放是造成温室效应的主要因素,对全球排放的CO2进行捕集非常重要。今采用浸渍法将PEI(聚乙烯亚胺)负载到KIT-6介孔分子筛孔道表面上,使孔的吸附作用和胺的吸收作用相结合,制备出吸附容量大和选择性高的CO2吸附剂,从穿透时间、吸附量、分离因子等方面研究了PEI负载率对CO2吸附性能的影响。结果表明:KIT-6介孔分子筛经PEI改性后对CO2的吸附量和选择性增强。随着PEI负载量的增大,吸附剂对CO2的吸附性能先增大后降低,当PEI负载率为0.6时,CO2的吸附量和分离因子分别达到最大值为2.09 mmol?g?1和30.56,为无负载时的6.0倍和7.2倍。随着温度的升高,PEI改性吸附剂对CO2的吸附量呈增长趋势。再生实验表明吸附饱和的PEI改性吸附剂在378 K条件下能够完全再生,且具有较好的循环再生稳定性。  相似文献   

10.
采用活性炭载体浸渍醋酸铜,并经热分解制备CuO为主要吸附成分的改性活性炭吸附剂,净化磷化工尾气中的低浓度PH3.研究并讨论了吸附剂制备时的焙烧温度和吸附过程中的氧含量对改性炭净化效率的影响.实验结果表明:300℃为最佳焙烧温度;2%(vol)为最佳氧含量.经扫描电镜(SEM)、比表面分析(N2-BET)和X射线光电子能谱(XPS)分析,结果表明:经醋酸铜改性,能显著提高活性炭对PH3的吸附能力;孔径为2~20 (A)的微孔对PH3的吸附起主导作用;经CuO催化生成的活性氧原子使PH3氧化为多种形式的磷氧化物,CuO因转变为Cu3P2或Cu3(PO4)2而失去活性.  相似文献   

11.
采用离子交换法将Ag+交换到铝化的SBA-15上,通过改变交换温度得到Ag含量分别为1.05,1.32,1.46和1.47(wt)%的Ag/Al-SBA-15吸附剂。N2吸附结果表明,所制备的吸附剂保持了介孔材料的结构。常温、常压下,对商业柴油(含硫量为0.0191(wt)%)的吸附脱硫表明,改性后吸附剂的硫容量提高了37.2%。再生实验表明,吸附剂的脱硫性能可100%恢复。  相似文献   

12.
采用吸附法对模型油中二氯乙烷的脱除进行研究。以SAPO-34分子筛为载体,以Ni2+、Cu2+、Mg2+、Zn2+为活性组分,利用等体积浸渍法制得不同金属离子改性的SAPO-34分子筛吸附剂。采用低温氮气吸附-脱附(BET)、X射线衍射(XRD)和氨吸附及程序升温脱附(NH3-TPD)对吸附剂进行了表征,考察了5种吸附剂对二氯乙烷的吸附脱氯效果及金属负载量对脱氯效果的影响,得到了最优吸附剂,同时考察了脱氯实验的吸附条件对脱氯效果的影响,得到了最佳吸附条件,最后研究了吸附剂的再生能力。结果表明:Ni/SAPO-34分子筛的吸附脱氯效果较好,并且有很好的再生能力,其吸附效果的最佳条件为镍金属离子的负载量为4%,吸附温度为20℃,剂油比为1∶30,吸附时间为50min。这一研究为真实油中有机氯化物的脱除提供了经验和依据。  相似文献   

13.
随着全球变暖日益严重,降低大气中的CO2浓度已成为全世界关注的问题.碱金属(钠和钾等)碳酸盐因吸附温度低被视为有前途的吸附材料并常用作再生干燥吸附剂.但是基于Na2CO3和K2CO3的吸附剂具有反应速率慢或吸附剂再生温度高等问题,因此制备了Na2CO3-碳纳米复合材料,其得出结论是分解-再生反应温度低于碳酸氢钠的温度....  相似文献   

14.
以3种不同孔径的介孔材料MCM-41,SBA-15,大孔SBA-15(SBA-15-L)为载体,采用离子交换法制备了Ag/Al-MCM-41,Ag/Al-SBA-15和Ag/Al-SBA-15-L介孔材料吸附剂。利用XRD,N2吸附,SEM-EDS,ICP-MS等手段对所制备的吸附剂进行了表征,并在固定床上对航空煤油进行了吸附脱硫研究。结果表明,交换Ag+所制备的吸附剂依然保持介孔材料的特性,并可将含S量为150×10-6的航空煤油中的硫化物,选择性的吸附脱除到S含量低于1.0×10-6。其中,在Ag/Al-MCM-41,Ag/Al-SBA-15和Ag/Al-SBA-15-L吸附剂上,可分别得到8.0,9.0和17.0mL的清洁航空煤油(含硫量小于1.0×10-6)。实验结果也表明,所制备的吸附剂吸附脱硫性能主要取决于介孔材料载体的孔径大小,载体的孔径越大,Ag+的利用率越高,吸附剂的吸附脱硫性能越强。将吸附饱和的Ag/Al-SBA-15-L吸附剂,于空气中在350℃进行再生5h,吸附剂的吸附性能可以100%的恢复。  相似文献   

15.
采用Co(NO_3)_2对活性炭进行改性,考察浸渍浓度和吸附温度等条件对活性炭吸附NO性能的影响,并对已吸附NO的0.3 mol·L~(-1)的Co(NO_3)_2改性活性炭进行再生。通过BET、SEM、吸附等温线和FT-IR表征样品的比表面积、颗粒形貌和表面官能团。结果表明,当浸渍溶液浓度为0.3 mol·L~(-1)时,吸附效果最佳,80 min时吸附效率达88.90%。活性炭的吸附效率随着温度升高而降低,用0.3 mol·L~(-1)Co(NO_3)_2改性的活性炭在200℃时的吸附效率大于90%,并可持续50 min。SEM和FT-IR表征结果表明,在Co(NO_3)_2改性的活性炭表面和孔隙生成了Co_3O_4,促进NO催化氧化为NO_2并进行吸附。加热再生后的0.3 mol·L~(-1)Co(NO_3)_2改性活性炭对NO的吸附效率在60 min内仍高于88.90%,再生效果较好,可持续再生利用。  相似文献   

16.
以介孔材料SBA-15为载体、过渡金属(Zn、Fe、Mn、Cu、Co和Ni)氧化物为活性组分,用等体积浸渍法制备了过渡金属氧化物负载型介孔脱硫剂,通过XRD和比表面积测定对其进行表征。结果显示,Zn负载的SBA-15对H2S吸附效果最好;Zn离子负载量为23%时,Zn/SBA-15对H2S穿透吸附量最大,为29.7 mg/g吸附剂;考察流速、反应温度以及杂质气体存在对Zn/SBA-15吸附脱除低浓度H2S的影响,并研究了Zn/SBA-15吸附脱除H2S的再生性能,结果表明在空气氛围下,Zn/SBA-15吸附剂在573 K可再生,循环使用4次穿透硫容不发生变化。  相似文献   

17.
以活化树脂为载体,利用等体积浸渍法负载过渡金属铁、镍、铜制备吸附剂,利用傅里叶红外光谱(FTIR)、N2吸附-脱附表征方法对吸附剂进行分析。在固-液全混流反应器内对煤焦油进行脱氮实验,考察不同吸附温度、吸附时间、剂油质量比对吸附剂脱氮效果的影响,确定最佳工艺条件。结果表明,负载Ni2+的改性树脂吸附剂吸附脱除煤焦油中氮化物的效果最好,在金属负载量为3.8%,吸附温度为60℃,吸附时间为90 min,剂油质量比为1∶10的条件下,氮化物脱除率可达61.74%,煤焦油收率为84.67%。  相似文献   

18.
采用KOH改性椰壳活性炭(AC)作为吸附剂,调变KOH和AC的质量比(KOH/AC,以下简称碱碳比)和活化温度制备一系列改性吸附剂,通过动态吸附法评价其脱除微量乙烷的性能,并与AC进行对比研究。评价结果表明,最佳制备条件为:KOH和吸附剂的最佳碱碳比为0. 5,最佳活化温度为800℃。在该条件下制备的KOH改性AC吸附剂的乙烷穿透吸附量达到482. 1μg/g,高于AC的169. 6μg/g。表征结果显示,与AC相比,KOH改性AC表面的氧含量更高,并增加了吸附剂的微孔数量,微孔比率从75. 3%增加到了83. 9%,并有适量的介孔,该结构有利于对乙烷的吸附。  相似文献   

19.
李婷  潘冠福 《洁净煤技术》2020,26(4):175-181
活性焦是一种高性价比的炭基催化脱硝材料,为研究其在低温无氨条件下的脱硝性能及热再生情况,采用固定床试验装置,进行低温脱除NO性能评价及原位热再生试验;并对2种试验用活性焦的比表面积、孔径分布和表面官能团等进行表征分析,研究表面特性对去除NO性能的影响;初步探讨活性焦对NO的低温脱除及热再生机理。结果表明:在进口NO体积浓度100×10-6、O_2体积浓度6%、反应温度70℃、空速1 000 h-1的NO脱除试验条件下,出口NO浓度随时间增加逐渐上升,脱硝率则直线下降。结合红外表征,定性说明活性焦脱除NO过程中存在催化氧化及吸附,可能的机理是活性焦中活性官能团将NO氧化为NO_2,并以吸附态NO_2形式赋存于活性焦孔隙表面,部分化学吸附态NO_2又在活性焦表面发生歧化反应,形成吸附态NO_3。O_2体积浓度6%、再生温度70~400℃、升温速率2℃/min的热再生试验条件下,NO浓度先快速上升,100~150℃达到平台,210℃左右达到脱附量峰值,此时NO脱附折算浓度约85 mg/m3,之后NO浓度逐渐下降至0;模拟烟气在250℃以上时,CO开始析出,CO生成量与再生温度成正比。脱硝后的活性焦在原位热再生过程中,吸附态NO_2又分解为NO释放出来。2种试验用活性焦样品的微观孔隙结构较为相似,活性焦样AC1和AC2的等温曲线都属于IV型等温曲线,迟滞回线属H4型,这说明2种样品的微观结构多为狭缝状孔道;AC2在吸附脱附曲线低P/P0区拐点处的吸附量、孔容、BET比表面积比AC1略大,说明前者样品中的微孔相对更多;活性焦样AC1和AC2的最可几孔径分别为1.76和1.57 nm。XPS和脱硝性能评价发现含有更多含氧/氮官能团的活性焦样品,脱硝活性更强。  相似文献   

20.
《应用化工》2022,(3):506-510
以净水厂铝污泥(AlS)为主要原料,依次经过铁盐浸渍和壳聚糖(CS)包覆,制得复合吸附剂AlS-Fe-CS,研究其对Cu(2+)的吸附。结果表明,化学改性后,铁(氢)氧化物和CS复合在铝污泥上;最优吸附pH为5.5,吸附平衡时间为20 h,对Cu(2+)的吸附。结果表明,化学改性后,铁(氢)氧化物和CS复合在铝污泥上;最优吸附pH为5.5,吸附平衡时间为20 h,对Cu(2+)的最大吸附量为72.36 mg/g,相比纯AlS性能提高了约1倍,且温度升高有利于吸附反应的进行;吸附过程符合拟二级动力学和Freundlich吸附等温线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号