首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
提出一种基于SVM(支持向量机)和ANN(人工神经网络)的车牌定位与识别算法,并使用OpenCV库有效实现。首先将灰度空间和HVS色度空间进行结合,在Sobel边缘提取基础上,进行自适应阈值下的二值化处理,通过对轮廓外接矩形的面积和长宽比初步定位车牌位置,然后利用SVM线下学习的方法更加精确的定位车牌位置。并采用寻找连通域有效外部轮廓的方法进行字符分割,最后对汉字位置、英文位置、数字位置和英文数字混合位置分别使用ANN方法进行字符识别。实验证明,该方法定位准确率和字符识别率高,可以有效应用于多种场合。  相似文献   

2.
车牌识别(LPR)是智能交通中关键技术之一。针对目前车牌识别技术存在的一些问题,详细分析基于BP神经网络的车牌字符识别方法,对BP神经网络收敛速度慢且容易陷入局部极小点的缺陷进行改进。经仿真实验结果表明效果良好。  相似文献   

3.
本文提出了一种基于单片机的车牌识别自动装置的设计思路,给出了系统的设计方案,并详细介绍了它的工作原理及其软硬件设计,提出了一种字符分割的新方法,利用BP神经网络原理对车牌中的汉字、字母及数字进行了分类识别,识别后由单片机控制将数据填入相应的信息管理系统。  相似文献   

4.
基于SVM的车牌区域定位系统研究   总被引:1,自引:0,他引:1  
隆晓玲  杨静 《信息技术》2010,34(8):55-57,61
提出了一种基于SVM算法的汽车车牌定位方法。首先介绍了SVM的数学模型以及汽车车牌图像特征信息的提取方法,然后在VC环境下测得本方法可以使车牌定位的精度和效率都较高,有一定的实用价值。  相似文献   

5.
基于BP神经网络算法的车牌字符识别系统设计   总被引:3,自引:0,他引:3  
构建车牌字符识别系统,并对系统中BP网络反传学习速率进行改进,提高了识别率并降低学习时间;在特征提取上针对汉字综合采用非均匀网格特征和外围特征提取法,字母与数字采用均匀粗网格特征加笔划密度特征提取法,优化了系统的识别精度并提高了识别速度.采用BP算法增强了车牌识别的容错性、鲁棒性.  相似文献   

6.
车牌识别是智能交通体系的核心,具有很大的研究价值.为解决传统的车牌定位不精确的问题,并且考虑到检测结果容易受到环境的影响从而导致采集车牌图像可能会产生噪音和干扰,本文以Radon图像矫正为基础并应用BP神经网络进行车牌识别可以有效地去除大部分噪声.仿真的结果显示,本文的算法具有良好的识别精度,可以在复杂的环境中,如有污...  相似文献   

7.
高勇 《电子测试》2021,(1):44-45,78
为更加准确的识别车牌信息,本文研究设计了基于BP神经网络的车牌识别模型.通过数字图像处理技术预处理车牌图像、定位车牌区域、分割车牌字符,最后采用BP神经网络技术实现车牌字符的识别.通过MATLAB软件仿真实验,取得了较好的识别结果.  相似文献   

8.
SVM在车牌字符识别中的应用   总被引:2,自引:0,他引:2  
采用支持向量机方法实现车牌字符识别.根据车牌字符排列特征,构造了汉字、数字、字母、数字 字母4个最佳分类器,通过车牌字符的序号对每个字符进行对应识别,再将识别结果组合得到车牌号码.实验结果表明该方法具有较高的车牌字符整体识别率,达到了98.33%,识别时间仅为15ms,能够满足实际应用.  相似文献   

9.
基于改进BP神经网络的车牌字符识别   总被引:1,自引:0,他引:1  
在分析了BP网络学习算法的缺陷的基础上引入动量项和遗传算法对BP网络学习算法进行改进,大大提高了BP网络的收敛速度.对车牌字符图像进行分割并利用sobel算子进行边缘检测来提取字符特征.然后利用改进的BP网络来自动识别车牌字符,提高了识别的速度和正确率.  相似文献   

10.
高速公路的不断发展和车辆管理体制的不断完善,为以图像处理为基础的智能交通管理系统进入实际应用领域提供了契机。主要是对该系统中采集的车辆图片进行车牌识别的研究,主要分为牌照区域提取、图像二值化、牌照字符分割和牌照字符识别几个步骤。其中前三步是图像预处理部分,主要为后面的牌照识别提取特征向量,核心部分的字符识别部分采用BP神经网络。通过大量数据训练调整网络权值,达到理想的识别效果。  相似文献   

11.
基于PCA和BP神经网络算法的车牌字符识别   总被引:3,自引:1,他引:3  
文章采用了双重PCA算法链接BP神经网络的方法对车牌字符进行识别.先由主成分分析法对原始样本数据进行分类,然后由BP神经网络法对拒识样本进行识别.研究结果表明,与传统的单一识别方法相比,提高了识别正确率,减少了训练时间.  相似文献   

12.
张长青  杨楠 《电子科技》2019,32(9):51-54
车牌识别是智能交通系统的重要组成部分,其关键是车牌字符识别技术。单一的神经网络难以识别模糊的车牌字符,文中提出了一种混合神经网络实现车牌字符识别技术。该混合神经网络结合联想记忆与BP神经网络,对输入的字符进行两次判别,经过训练、特征提取得到检测结果。通过在不同的噪声和不同的角度实验表明,采用混合神经网络具有更高的识别精度。  相似文献   

13.
基于支持向量机和核主成分分析的车牌字符识别   总被引:1,自引:0,他引:1  
给出了一种结合核主成分分析(KPCA)和支持向量机(SVM)进行车牌字符识别的新方法.该算法通过KPCA进行字符的特征提取,并利用SVM分类器完成字符的识别.实验证明,KPCA在高维空间具有较强的特征选择能力,SVM的识别率也明显高于BP神经网络.  相似文献   

14.
一种基于不变矩和BP网络的目标识别方法   总被引:2,自引:0,他引:2  
为了有效地提高旋转、尺度变化目标的识别率,首先提取目标图像的不变矩,以此作为目标识别的特征向量,然后利用将附加动量项与自适应学习速率相结合的改进BP算法实现对目标的分类识别.字符图像仿真实验表明,这种针对旋转、尺度变化目标的识别方法是有效的,可行的.  相似文献   

15.
一种基于改进BP神经网络的物体识别方法   总被引:1,自引:2,他引:1  
提出基于自适应学习速率动量梯度下降的BP算法进行物体识别,并以修正的Hu不变矩特征作为BP神经网络的输入,通过训练对网络的权值和阈值进行调整.该算法使BP神经网络在学习速率和稳定性上有了进一步的提高.仿真结果表明该方法对物体的平移、旋转、缩放都具有不变性,从而验证了该方法的有效性.  相似文献   

16.
步态识别是生物特征识别技术中的一个新兴领域,它根据人们走路的个体特点进行身份识别,具有非侵犯性、难以隐藏、对系统分辨率要求低、远距离识别等优点,已成为基于视觉的人体运动分析的研究热点。该文提出了基于主成分分析(PCA)的特征提取方法,有效地对高维步态轮廓特征进行降维,再利用BP神经网络进行特征分类识别。实验结果表明,算法达到了较高的识别率。  相似文献   

17.
基于CCD和神经网络的LCD数显字符采集与识别   总被引:1,自引:0,他引:1  
利用CCD对LCD数码显示字符进行采集,在分析图像处理和神经网络理论的基础上,采用网格法与交线特征提取法,对LCD数显字符进行识别,为具有LCD数显而与计算机无标准通信接口的仪器仪表设备提供一种实用的无线接口.实验表明,系统对LCD数显字符采集方便,识别率高,并且抗干扰能力强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号