首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
介绍了用混合油作原料,通过萃取、闪蒸、精馏等工艺过程,从混合油中分离出高纯度(纯度大于99.5%)的异丙醇产品。试验分别考察了不同萃取剂、温度、时间、剂料质量比对萃取试验的影响,结果表明,以甘油作为萃取剂效果最好;剂料质量比对异丙醇的纯度影响最大,其次是萃取时的温度,而萃取时间对异丙醇的纯度影响最小。通过试验确定了较佳工艺条件,萃取试验的较佳工艺条件为:剂料质量比为1∶2;萃取温度为30℃;萃取时间为2 h。精馏试验的较佳工艺条件:回流比为5∶1;采出温度为82℃。  相似文献   

2.
冯海强  傅吉全 《化工进展》2011,30(3):478-482
采用萃取精馏和催促精馏相结合的分离集成技术从碳九芳烃中分离均三甲苯。考察了理论塔板数、回流比、萃取剂/进料/催促剂比(质量)对塔顶塔釜均三甲苯产物纯度的影响。结果表明,可得到纯度大于98.0%的均三甲苯产品,适宜的理论板数为102块、适宜的回流比为15、适宜的萃取剂/进料/催促剂比(质量)为7∶1∶0.3。本研究为进一步中试提供了依据。  相似文献   

3.
利用Aspen Plus流程模拟软件,模拟了以苯胺为萃取剂,萃取精馏分离苯-环己烷体系的工艺流程,考察了溶剂比、全塔理论塔板数、原料进料位置、萃取剂进料位置等因素对分离效果的影响。确定了最佳工艺操作参数为:萃取精馏塔的全塔理论板数为32,原料和萃取剂进料位置分别为第25块和第5块理论板,回流比为1.5,溶剂比为2.5。产品环己烷的纯度达到99.66%,苯的纯度达到99.66%,再生的萃取剂苯胺的纯度达到99.99%。  相似文献   

4.
提高钛白废酸提钪萃取选择性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究旨在选择合适的助萃剂LH,提高二(2-乙基己基)磷酸(P204)-磷酸三丁酯(TBP)-磺化煤油体系对钛白废酸提钪的选择性,提高钪钛分离系数和钪铁分离系数。研究采用的工艺为二次萃取富集、二次反萃成钪、化学精制提纯钪。通过正交试验确定最佳萃取工艺条件:萃取剂最佳配比V(P204)∶V(TBP)∶V(磺化煤油)=1.3∶0.7∶10,一次萃取相比为V(O)∶V(A)=1∶21,不加助萃剂二次萃取相比为V(O)∶V(A)=1∶5,加助萃剂时其加量为水相体积的1.7%,此时钪钛分离系数达到124 812,钪铁分离系数达到8 202。  相似文献   

5.
应用化工过程模拟软件Aspen Plus对异丙醇-环己烷最低共沸物系的连续萃取精馏过程进行了模拟与优化。通过Radfrac模块比较了不同萃取剂在相同条件下的分离效果,筛选出最佳萃取剂为乙二醇。运用灵敏度分析工具确定了最优工艺参数。采用双塔差压工艺进行节能改造,节能7.06%,异丙醇的纯度达99.96%,环己烷的纯度达到99.98%;萃取剂乙二醇的循环补充量为0.4741kg·h-1。  相似文献   

6.
研究了t-BAMBP[4-叔丁基-2-(α-甲基苄基)苯酚]/磺化煤油萃取体系,从提铯后的母液中,萃取分离钾铷的过程。考察了萃取时间、萃取剂浓度、萃取相比等萃取条件、水洗条件和反萃取条件对铷钾分离的影响。确定了适宜的工艺条件为:t-BAMBP浓度为0.7 mol/L,相比O/A=3∶1,萃取时间为5 min;以0.1 mol/L氯化钠溶液为洗涤剂,洗涤相比O/A=4∶1;以0.5 mol/L 氯化氢溶液为反萃剂,反萃相比O/A=5∶1。经过5级逆流反萃,铷的反萃率达到95.6%以上,铷钾的分离系数较高,实现了铷钾分离。  相似文献   

7.
研究了萃取精馏工艺对乙二胺和水共沸物的分离。通过Aspen Plus模拟计算了水对乙二胺(EDA)的相对挥发度,以此建立了一种快速筛选萃取剂的方法,确定最佳萃取剂为1,4-丁二醇。以1,4-丁二醇为萃取剂,选用Aspen Plus中的RadFrac严格精馏模型,进一步对萃取工艺操作参数进行了模拟优化,确定了脱水塔及EDA精制塔的最佳操作条件,即脱水塔理论塔板数为27,原料进料位置为第7块理论板,萃取剂进料位置为第3块理论板,萃取剂用量为300 kg/h,回流比为0.5;EDA精制塔理论板数为29,回流比1.5,进料位置在第5块理论板。在最优工艺条件下,水的理论纯度(质量分数)可达99.90%,EDA纯度大于99.90%,回收1,4-丁二醇纯度大于99.90%;对1,4-丁二醇的萃取效果进行了实验验证,水纯度达到99.99%,EDA纯度达到99.92%,实际萃取结果与模拟结果相当。  相似文献   

8.
分别以乙二醇、氯化胆碱/乙二醇(摩尔比1∶2,DES1)、氯化胆碱/乙醇酸(摩尔比1∶3,DES2)低共熔溶剂为萃取剂,设计萃取精馏和萃取隔壁塔流程,模拟分离乙腈和水形成的共沸体系。使用灵敏度分析对上述流程分别进行了参数优化。结果表明,与乙二醇萃取精馏工艺相比,使用低共熔溶剂DES1不能有效降低能耗和费用;低共熔溶剂DES2用量降低52. 5%,能耗降低81. 9%,操作费用降低12%,年度总费用(TAC)降低53. 8%;采用隔壁塔萃取精馏工艺后,一定程度上都能节能减耗。DES2作为萃取剂的萃取精馏工艺为最优工艺,节能优势明显。  相似文献   

9.
以中低温煤焦油加氢生成的石脑油(煤基石脑油)为原料,在萃取温度40℃、萃取剂和原料体积比(剂油比)1.5∶1、萃取时间5 min、分相时间20 min的工艺条件下,探究不同萃取剂对液-液萃取脱芳效果的影响,其中复合萃取剂V(二甲基亚砜,DMSO)∶V(N,N-二甲基甲酰胺,DMF)=9∶1时脱芳效果较好,然后选择此萃取剂研究各工艺过程参数对脱芳效果的影响。通过单因素考察和响应面分析得到液-液萃取脱芳的最优工艺条件为:萃取温度为44.48℃,单级剂油比为1.69∶1,萃取时间为5.30 min,分相时间为10 min,在此工艺条件下,经5级错流萃取,原料的芳烃脱除率可达(89.51±0.03)%,溶剂油收率为(73.33±0.03)%。  相似文献   

10.
《煤化工》2021,49(4)
针对传统的煤焦油碱洗法提酚工艺会产生大量的含酚碱渣和废水、乙醇胺法提酚无二次污染但酚产品中萘含量过高的问题,根据乙醇胺和萘类化合物间的共沸特性,提出了一种乙醇胺法提酚的概念化改进流程和工艺。新流程以乙醇胺为萃取剂,萃取煤焦油中的酚类和部分萘类,利用共沸特性将萘类与含酚萃取物分离,再利用精馏和结晶获得纯度较高的酚类和萘类产品。利用实验和模拟方法进行了工艺验证和流程参数优化,结果显示:在乙醇胺和酚油质量比为2∶1、两步结晶温度分别为40℃和5℃、萃取物分馏塔塔盘数72块、回流比为1.5的情况下,利用该工艺提取的粗酚纯度可达98.68%以上,粗萘纯度可达95%以上。  相似文献   

11.
用常规的间歇萃取精馏实验装置,研究了以单乙醇胺(MEA)为萃取剂间歇萃取精馏分离甲醇—丙酮恒沸物的过程。考察了萃取剂、全回流时间、共沸物组成、溶剂与混合物的体积比、回流比等因素对萃取精馏分离甲醇—丙酮共沸体系的影响,从而得出最优的萃取条件。  相似文献   

12.
在常规的间歇萃取精馏实验装置中,研究了以N,N-二甲基酰胺(DMF)和二甲亚砜(DMSO)作萃取剂;在间歇萃取精馏塔中分离乙醇-乙酸乙酯体系的过程。对全回流时间、不同萃取剂、恒沸物组成、溶剂和混合物的体积比、加盐及加碱等因素考察,分析萃取精馏分离乙醇-乙酸乙酯共沸体系的影响,从而得出最佳的萃取条件。  相似文献   

13.
The present study is devoted to the arrangement of isocriterial manifolds and regions of energetic optimality of extractive distillation complexes within the simplex of the initial feed composition during the separation of methanol, n-propyl acetate, and toluene mixture. The mixture being separated comprises one binary azeotrope with a boiling temperature being minimal (in the binary pair of methanol-toluene), and one tangential azeotrope near pure n-propyl acetate (in the pair of n-propyl acetate-toluene). Aniline was proposed to be used as an extracting agent for the separation of this mixture.  相似文献   

14.
于洋  白鹏  李广忠  尹琨  庄琼红 《化工进展》2012,31(4):758-762
提出和研究了以苯胺作为溶剂的甲醇-乙腈间歇萃取精馏分离工艺。根据溶剂极性相似相溶原理,结合ChemCAD软件模拟汽液平衡和汽液平衡实验确定苯胺为合适的溶剂。结果表明,不仅苯胺能够消除甲醇-乙腈物系的共沸现象,效果优于N,N-二甲基甲酰胺(DMF),而且可以采用Wilson模型对苯胺作为溶剂的甲醇-乙腈共沸物系汽液平衡进行模拟。通过实验考察了间歇萃取精馏的分离效果。采用有33块理论板的填料塔进行间歇萃取精馏甲醇-乙腈共沸混合物分离实验,其中净化回收段填料层3块理论板,萃取精馏段填料层30块理论板,回流比为4,苯胺作为溶剂,溶剂质量比为2.5∶1时,在塔顶得到产品甲醇质量分数为98.97%,高于DMF作为溶剂时的95.76%;表明苯胺更加适合作为萃取精馏分离甲醇-乙腈共沸物系的溶剂。  相似文献   

15.
采用萃取精馏的方法分离乙腈-正丙醇的共沸物系。首先利用溶剂选择原理和UNIFAC基团贡献法选出N-甲基吡咯烷酮作为萃取精馏的萃取剂,同时采用NRTL模型对常压下乙腈-正丙醇物系和加入萃取剂N-甲基吡咯烷酮后的汽液平衡进行模拟和实验验证,模拟结果与实验数据吻合较好。然后通过间歇萃取精馏实验进一步考察所选萃取剂的分离效果。结果表明,N-甲基吡咯烷酮能够打破共沸,有效分离乙腈-正丙醇共沸物系。采用有28块理论板的填料塔,萃取剂进料位置为第4块板,溶剂比为1.0,回流比为3,可以从塔顶得到质量分数为98.6%的乙腈产品。最后,用Aspen Plus软件对乙腈-正丙醇物系的连续萃取精馏流程进行了模拟,得出的参数为进一步的工业应用奠定基础。  相似文献   

16.
针对酯交换制备过程中甲醇?碳酸二甲酯共沸体系难分离的问题,分别选择变压精馏、碳酸乙烯酯(EC)萃取精馏与乙二醇(EG)萃取精馏3种分离过程进行模拟与能量集成,对比了3种工艺流程的分离能耗,采用有效能(?)分析方法分析了能耗最低的变压分离过程的有效能(?)损失. 结果表明,3种工艺流程的能耗EG萃取精馏>EC萃取精馏>变压精馏,碳酸二甲酯生产过程中内部循环物流能量是输入总能量的1.55倍,变压共沸分离过程的?损失为7.9%。  相似文献   

17.
利用COSMO-SAC模型对常用萃取剂进行筛选,进而确定对二甲苯适合作为分离乙醇-丙酸乙酯二元共沸物系的萃取剂,并利用汽液平衡实验验证了所选萃取剂的分离效果。结果表明对二甲苯能够分离乙醇-丙酸乙酯共沸物系。采用Aspen Plus模拟软件对乙醇-丙酸乙酯-对二甲苯三元体系进行了连续萃取精馏模拟,并获得了适宜的工艺参数:萃取精馏塔中,理论塔板数为60块,原料进料位置为第50块塔板,萃取剂进料位置为第25块塔板,回流比为7,溶剂比为0.8,塔顶乙醇的含量可达到99.85%;溶剂回收塔中,理论塔板数为30块,进料塔板的位置为第11块塔板,回流比为6,塔顶得到丙酸乙酯的质量分数为99.0%。  相似文献   

18.
王亚其  李科 《河北化工》2012,35(2):18-19,33
通过萃取精馏、精馏对甲醇、丙酮与乙酸乙酯的混合溶媒加以分离,通过对生产数据的调整,确定了萃取精馏过程中混合溶媒与萃取水加入比例为1∶1,此条件下,萃取效果最好。萃取塔顶可以得到丙酮与乙酸乙酯和水的共沸物,塔底可以得到纯度为99.5%的甲醇。  相似文献   

19.
Methyl acetate cannot be completely removed from methyl acetate-methanol mixtures by distillation because of the presence of the minimum binary azeotrope. Methyl acetate can be readily removed as overhead product from mixtures containing it and methanol by using extractive distillation in which the extractive distillation agent is a higher boiling oxygenated, nitrogenous and/or sulfur containing organic compound or a mixture of these. Typical examples of effective agents are dimethylsulfoxide, glycerine plus propylene glycol, ethylene glycol plus dimethylsulfoxide plus 1,5-pentanediol. Methanol can be removed as the overhead product from methyl acetate when the extractive distillation agent is nitrobenzene, propylene carbonate or ethylene glycol phenyl ether.  相似文献   

20.
Methyl acetate cannot be completely removed from methyl acetate-methanol mixtures by distillation because of the presence of the minimum binary azeotrope. Methyl acetate can be readily removed as overhead product from mixtures containing it and methanol by using extractive distillation in which the extractive distillation agent is a higher boiling oxygenated, nitrogenous and/or sulfur containing organic compound or a mixture of these. Typical examples of effective agents are dimethylsulfoxide, glycerine plus propylene glycol, ethylene glycol plus dimethylsulfoxide plus 1,5-pentanediol. Methanol can be removed as the overhead product from methyl acetate when the extractive distillation agent is nitrobenzene, propylene carbonate or ethylene glycol phenyl ether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号