首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The objective of this study was to establish the thermal characteristics of the lauric acid (95% purity) as a latent heat storage material filled in the annulus of vertical concentric double pipe during its melting process,The temperature data were used to determine the thermal characteristics,including the temporal temperature variations and the effects of the mass flow rate and the inlet temperature of the heat transfer fluid on the heat transfer coefficient and the heat charging fraction during the melting process,The results indicated that the time to reach to heat charging fraction of 1.0 could be altered by changing the mass flow rate and the inlet temperature of the heat transfer fluid.  相似文献   

2.
The objective of this study was to establish the thermal characteristics of the lauric acid (95% purity) as a latent heat storage material filled in the annulus of vertical concentric double pipe during its melting process. The temperature data were used to determine the thermal characteristics, including the temporal temperature variations and the effects of the mass flow rate and the inlet temperature of the heat transfer fluid on the heat transfer coefficient and the heat charging fraction during the melting process. The results indicated that the time to reach to heat charging fraction of 1.0 could be altered by changing the mass flow rate and the inlet temperature of the heat transfer fluid.  相似文献   

3.
Storing natural gas in wet active carbon is a recently proposed method. The research progress shows that this method considerably decreases the storage pressure while maintaining the storage capacity equal to or even higher than compressed natural gas (CNG). There is no requirement of pre-sifting any component out of natural gas for the storage, and the thermal effect on fast charging/discharging has almost no effect on the storage capacity. The charging and discharging processes are reversible and show good dynamic behavior. Although the storage temperature is a little lower than the ambient, the new method seems technically and costly more competitive than the available methods.  相似文献   

4.
A sodium sulfate (NaeSO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3 as the silica source. Na2SO4 in the composite acts as a latent heat storage substance for solid-liquid phase change, while SiO2 acts as a support material to provide structural strength and prevent leakage of melted NazSO4. The microstructure and composition of the prepared composite were characterized by the N2 adsorption, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The results show that the prepared Na2SOJSiO2 composite is a nanostructured hybrid of NazSO4 and SiO2 without new substances produced during the phase change. The macroscopic shape of the NazSO4/SiO2 composite after the melting and freezing cycles does not change and there is no leakage of Na2SO4. Determined by differential scanning calorimeter (DSC) analysis, the values of phase change latent heat of melting and freezing of the prepared NazSO4/SiO2 (50%, by mass) composite are 82.3 kJ.kg i and 83.7 kJ.kg-1, and temperatures of melting and freezing are 886.0 ℃ and 880.6 ℃, respectively. Furthermore, the Na2SOJSiO2 composite maintains good thermal energy storage and release ability even after 100 cycles of melting and freezing. The satisfactory thermal storage performance renders this composite a versatile tool for high-temperature thermal energy storage.  相似文献   

5.
Low critical temperature limits the application of CO2 trans-critical power cycle. The binary mixture of R290/CO2 has higher critical temperature. Using mixture fluid may solve the problem that subcritical CO2 is hardly con-densed by conventional cooling water. In this article, theoretical analysis is executed to study the performance of the zeotropic mixture for trans-critical power cycle using low-grade liquid heat source with temperature of 200 °C. The results indicated that the problem that CO2 can't be condensed in power cycle by conventional cooling water can be solved by mixing R290 to CO2. Variation trend of outlet temperature of thermal oil in super-critical heater with heating pressure is determined by the composition of the mixture fluid. Gliding temperature causes the maximum outlet temperature of cooling water with the increase of mass fraction of R290. There are the maximum values for cycle thermal efficiency and net power output with the increase of supercritical heating pressure.  相似文献   

6.
First and Second Law analyses were conducted to evaluate the performance of a closed latent heat thermal energy storage (LHTES) system employing calcium chloride hexahydrate (CaCl2-6H2O).The First and the Second Laws of thermodynamics were applied to the system from viewpoint of energy and exergy analyses,respectively. The energy storage tank in the system is neither fully mixed nor fully stratified. It may be considered as semithermal stratified. Experiments that include both charging and discharging periods were performed on sunny winter days in 1996. The energy and exergy variations and the overall energy and exergy efficiencies of the closed LHTES system were calculated for the complete charging and discharging cycle of the selected fifteen clear-sky winter days. Mean energy and exergy efficiencies were found to be 55.20% and 34.83%, respectively.  相似文献   

7.
Aiming to identify the validity of fabricating microencapsulated phase change material (PCM) with polymethylmethacrylate (PMMA) by ultraviolet curing emulsion polymerization method using iron (Ⅲ) chloride as photoinitiator,SA/PMMA microcapsules were prepared and various techniques were employed to determine the ignition mechanism,structural characteristics and thermal properties of the composite.The results shown that the microcapsules containing SA with maximum percentage of 52.20 wt% formed by radical mechanism and only physical interactions existed in the components both in the prepared process and subsequent use.The phase change temperatures and latent heats of the microencapsulated SA were measured as 55.3 ℃ and 102.1 J.g-1 for melting,and 48.8 ℃ and 102.8 J.g-1 for freezing,respectively.Thermal gravimetric analysis revealed that SA/PMMA has good thermal durability in working temperature range.The results of accelerated thermal cycling test are all shown that the SA/PMMA have excellent thermal reliability and chemical stability although they were subjected 1000 melting/freezing cycles.In summary,the comparable thermal storage ability and good thermal reliability facilitated SA/PMMA to be considered as a viable candidate for thermal energy storage.The successful fabrication of SA/PMMA capsules indicates that ferric chloride is a prominent candidate for synthesizing PMMA containing PCM composite.  相似文献   

8.
Ahmet Sari —Kamil Kaygusuz Thermal energy storage characteristics of myristic and stearic acids eutectic mixture for low temperature heating applica- tions 270 AN Guoping see YU Huiping 8 AN Shengli see WANG Bo 618 BAI Jing see WEN Jianping 790 BAO Yongzhong see HUANG Jian 87 CAO Chuanbao see JI Fengqiu 389 CAO Guangyi see LI Yong 349 CAO Wen see ZHENG Danxing 690 CAO Zhikai see LUO Zhenghong 194 CEN Peilin see CHANG Chun 708; JIN Zhihua 542; XU Xiaobo 419 CH…  相似文献   

9.
燕尾形轴向微槽道热管的传热特性(英文)   总被引:1,自引:0,他引:1       下载免费PDF全文
A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance. The effect of heat load on the axial distribution of capillary radius, and the effect of working temperature and wick structure on the maximum heat transfer capability, as well as the effect of the heat load and working temperature on the total thermal resistance are all investigated and discussed. It is indicated that the meniscus radius increases non-linearly and slowly at the evaporator and adiabatic section along the axial direction, while increasing drastically at the beginning of the condenser section. The pressure difference in the vapor phase along the axial direction is much smaller than that in the liquid phase. In addition, the heat transfer capacity is deeply affected by the working temperature and the size of the wick. A groove wick structure with a wider groove base width and higher groove depth can enhance the heat transfer capability. The effect of the working temperature on the total thermal resistance is insignificant; however, the total thermal resistance shows dependence upon the heat load. In addition, the accuracy of the model is also verified by the experiment in this paper.  相似文献   

10.
Perovskite-type La0.8Sr0.2MnO3 was prepared by stearic acid gel combustion method. The obtained powders were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scaning electron micrograph (SEM) and X-ray photoelectron spectroscopy (XPS) techniques. The catalytic activity of La0.8Sr0.2MnO3 was investigated on thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by thermal gravity-differential scanning calorimetry (TG-DSC) techniques. The experimental results show that La0.8Sr0.2MnO3 is an effective catalyst for HMX thermal decomposition. The surface-adsorbed species such as H2O, OH&;#61485; and adsorbed oxygen (Oad) could result in an advance in the onset temperature of HMX thermal decompo-sition. The mixture system of Mn3+ and Mn4+ ions and lattice oxygen could play key roles for the increase of the decomposition heat of HMX because these exothermic reactions could be catalyzed by La0.8Sr0.2MnO3 between CO and NOx (from the thermal decom-position of HMX) and the oxidation reaction of CO. According to the previous researches and our results, perovskite-type La0.8Sr0.2MnO3 may be used as a novel catalyst or modifier for nitrate ester plasticized polyether (NEPE) propellant.  相似文献   

11.
By composing (Eudragit S) with fatty acids (stearic acid (SA), palmitic acid (PA), and myristic acid (MA)), form‐stable phase change materials (PCMs), which can retain the same shape in a solid state even when the temperature of the PCMs is over the melting points of the fatty acids, are prepared. The compatibility of fatty acids with the Eudragit S is proved by microscopic investigation and infrared (FTIR) spectroscopy. The melting and crystallization temperatures and the latent heats of melting and crystallization of the form‐stable PCMs are measured by Differential Scanning Calorimetry (DSC) method. The maximum mass percentage of all fatty acids in the form‐stable PCMs is found as 70%, and no leakage of fatty acid is observed at the temperature range of 50–70°C for several heating cycles. Thermal properties obtained from the DSC analysis indicate that the Eudragit S/fatty acid blends as form‐stable PCM have great potential for passive solar latent heat thermal energy storage (LHTES) applications in terms of their satisfactory thermal properties and utility advantage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1402–1406, 2006  相似文献   

12.
正辛酸-肉豆蔻酸低温相变材料的制备和循环性能   总被引:1,自引:0,他引:1  
研制了一种用于相变温度在2~8℃的医药冷藏运输系统的二元有机复合相变材料,该材料由正辛酸与肉豆蔻酸按比例混合而成。首先通过理论计算预测二元混合物的共晶点,确定它的低共熔混合物的比例、相变温度以及潜热值,然后围绕共晶点比例配制了6种不同比例的混合物。使用步冷曲线法测得正辛酸与肉豆蔻酸的低共熔点温度为6.2℃,过冷度为0.5℃,其质量比为87:13。经过差示扫描量热仪(DSC)测得复合相变材料的相变温度为7.13℃,相变潜热为146.1J/g,热导率为0.2832W/(m·K)。对正辛酸-肉豆蔻酸复合相变材料进行40次、80次的循环充放冷实验,发现其相变温度和潜热值均未发生明显变化。实验结果表明,该材料在蓄冷系统尤其是医药冷藏运输系统中有着很大的应用潜力。  相似文献   

13.
CA-SA分子合金的制备及储热性能研究   总被引:1,自引:0,他引:1  
用差示扫描量热仪(DSC)分析研究了癸酸(CA)/硬脂酸(SA)二元混合物的热性能,结果表明,CA-SA合金没有一个确定的低共熔点,只有一个配比范围,并用IR和DSC对81%CA-SA二元混合物经180次加速冷热循环前后的分子结构和热性能进行对比研究,分析表明,此共熔物的分子结构没有发生变化,相变温度和相变焓变化较小,热性能稳定,适合作为相变储能材料。  相似文献   

14.
三水醋酸钠相变储能复合材料改性制备及储/放热特性   总被引:2,自引:0,他引:2  
吴东灵  李廷贤  何峰  王如竹 《化工学报》2018,69(7):2860-2868
水合盐相变储热材料普遍存在的过冷和相分离现象是影响其热稳定性和热性能的关键问题。以中低温水合盐相变储热材料三水醋酸钠(SAT)为研究对象,采用熔融共混法将羧甲基纤维素(CMC)和十二水磷酸氢二钠(DHPD)作为添加剂对三水醋酸钠进行了改性研究,通过各成分的配比优化制备了高性能相变储热复合材料,利用DSC及熔融-凝固装置对改性材料进行了热物性和稳定性的测试,分析了不同质量分数的添加剂对相变储热复合材料的相变焓、相变温度、过冷度及相分离现象的影响;在此基础上采用改性的SAT相变储热复合材料构建了高密度储热器并搭建了相变储能热水实验系统,研究了不同运行工况下相变储热器的储/放热性能。结果表明:添加0.5% CMC和2% DHPD的相变储热复合材料有效改善了纯SAT的相分离严重和过冷度大的问题,具有良好的热稳定性,多次循环后复合样品的相变焓为258 kJ·kg-1,相变温度为57℃,过冷度在2℃以内;相变储能热水系统在不同放热工况下出口水温度均超过50℃,放热过程中相变材料温度变化平稳,储热器的储放热效率高于90%,放热功率大于10 kW,且随着入口水温下降,放热功率、放热量及储放热效率都提高,相变储热器的储能密度是传统水箱的2.6倍。  相似文献   

15.
泡沫金属强化石蜡相变蓄热过程可视化实验   总被引:5,自引:2,他引:5       下载免费PDF全文
相变材料的低热导率是限制潜热蓄热广泛应用的重要原因。将相变材料石蜡真空条件下注入到泡沫金属铜内制备泡沫金属铜-石蜡复合相变材料,通过铜的高热导率及高孔隙材料的大面体比来强化相变换热过程。采用DSC示差扫描量热法对石蜡进行热物性测量获得准确的石蜡相变温度及相变潜热。以管壳式相变蓄热结构为对象,提取对称结构进行可视化设计,对比纯石蜡及泡沫金属铜-石蜡复合材料在相同运行条件下的相变过程,追踪二者熔化过程的相界面位置随时间的演化过程并布置热电偶准确测量材料内部的温度分布。结果显示加入泡沫金属后的复合材料的内部温差明显减小,温度分布均匀,蓄热热通量显著增大,有效缩短相变时间并缓解了自然对流造成的顶部过热和底部不熔化现象。  相似文献   

16.
采用共形离子溶液模型(conformalionic solution model, CIS) 在二元熔盐体系相图的基础上,对三元熔盐体系LiNO3-NaNO3-KNO3进行了相图计算,得到该三元体系最低共熔点为117.7℃,相应的摩尔分数组成分别为x(LiNO3) = 0.375,x(NaNO3) = 0.075,x(KNO3) = 0.550。按照热力学最低共熔点计算结果,采用熔融法制备了三元硝酸熔盐,通过DSC和TG实验测定其最低共熔点为118.3℃,这与计算得到的结果(117.7℃)基本一致。TG测试结果表明当温度低于587.2℃时,该三元熔盐体系较为稳定,其工作温度范围为118.3~587.2℃,该三元硝酸熔盐适合在太阳能热发电中作为高温传热蓄热材料使用。  相似文献   

17.
高剑晨  赵炳晨  何峰  李廷贤 《化工学报》2021,72(6):3328-3337
水合盐相变材料因具有较高的相变焓和较低的成本在中低温储热领域有着广泛的应用前景,但其在储放热过程中通常存在过冷度大和热循环稳定性差的问题。以六水硝酸镁为主要研究对象开展相变储热复合材料的改性制备及相变储热装置的研制,采用熔融共混法制备了以二水硫酸钙为成核剂的六水硝酸镁相变储热复合材料,利用差示扫描量热仪及步冷曲线法测试了相变储热复合材料的热物性和循环热稳定性。在此基础上设计并构建了储热量为152 kWh的相变储热装置和相变储热系统,并对其储/放热性能进行了测试。结果表明:添加了2%(质量)二水硫酸钙的相变储热复合材料具有较好的循环热稳定性,且在经过50次熔化-凝固循环后其过冷度一直保持在0.5℃内,相变温度保持在87℃左右,相变焓保持在150 kJ/kg以上;相变储热装置可实现高达27 kW的平均储热功率,在保证放热过程中出水温度不低于56℃的情况下,可实现8 kW的平均放热功率和92.3%的储-放热效率,可满足建筑采暖及日常生活热水需求。  相似文献   

18.
左远志  李熙亚 《化工进展》2007,26(7):1018-1022
经济型的蓄热系统设计对聚焦式太阳能热发电的市场竞争力影响效果非常明显,一个比较有效的方法就是采用斜温层蓄热。在斜温层蓄热单罐设计理念的基础上,提出了一种熔融盐斜温层混合蓄热单罐系统,该单罐的中段为斜温层显热蓄热,上部为高温壳管式相变换热器,下部为低温壳管式相变换热器。斜温层保障高低温熔融盐液在同一单罐内上下隔开,而高、低温壳管式相变换热器既增加了蓄热容量,又简化了熔融盐液的注入和出料结构。初步实验测定了该混合蓄热单罐系统的有效蓄热量,证实了其斜温层在放热与吸热循环运行中能稳定保持,并表明了该系统具有潜在的应用前景。  相似文献   

19.
利用差示扫描量热仪测定了羊蜡酸-棕榈酸二元混合物的热性能,确定其低熔混合物配比,并采用激光导热仪分析了添加微米级导热填料对提高该低熔混合物作为相变材料(PCM)的导热性的效果。结果表明,将20质量份数的改性SiC粉加入100份PCM中,其导热率增加100%且相容性较好,而添加同量的α-Al2O3粉和玻璃粉,其导热率分别提高66%和44%。DSC热性能分析表明,填料的使用会使PCM的熔点增加3~5℃,但随着添加量的增加熔点基本保持不变,而熔融焓则会随着添加剂量的增加而递减。以上结果表明,对导热率提高效果最明显的是改性SiC粉。  相似文献   

20.
The dynamic charging performance of a solar heat storage system involving a packed bed containing spherical capsules is studied. The dynamic charging process of the solar heat storage system is simulated according to the energy balance equations. Paraffin is used as the phase change material (PCM) and water is used as the heat transfer fluid (HTF). The temperatures of the PCM and HTF, melting fraction and solar heat storage capacity are illustrated and analyzed. The influences of inlet temperature, initial temperature and flow rate of HTF, and the porosity of the packed bed on the charging time and heat storage capacity during the heat storage process are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号