首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blue light responses in higher plants can be mediated not only by specific blue light receptors, but also by the red/far-red photoreversible phytochrome system. The question of interdependence between these photoreceptors has been debated over many years. The availability of Arabidopsis mutants for the blue light receptor CRY1 and for the two major phytochromes phyA and phyB allows a reinvestigation of this question. The analysis of photocontrol of seed germination, inhibition of hypocotyl growth and anthocyanin accumulation clearly demonstrates that (i) phyA shows a strong control in blue light responses especially at low fluence rates; (ii) phyB mediated induction reactions can be reversed by subsequent blue light irradiations; and (iii) CRY1 mediates blue light controlled inhibition of hypocotyl growth only at fluence rates higher than 5 mumol m-2s-1 and independently of phytochrome A and B.  相似文献   

2.
3.
4.
Plants have at least two major photosensory receptors: phytochrome (absorbing primarily red/far-red light) and cryptochrome (absorbing blue/UV-A light); considerable physiological and genetic evidence suggests some form of communication or functional dependence between the receptors. Here, we demonstrate in vitro, using purified recombinant photoreceptors, that Arabidopsis CRY1 and CRY2 (cryptochrome) are substrates for phosphorylation by a phytochrome A-associated kinase activity. Several mutations within the CRY1 C terminus lead to reduced phosphorylation by phytochrome preparations in vitro. Yeast two-hybrid interaction studies using expressed C-terminal fragments of CRY1 and phytochrome A from Arabidopsis confirm a direct physical interaction between both photoreceptors. In vivo labeling studies and specific mutant alleles of CRY1, which interfere with the function of phytochrome, suggest the possible relevance of these findings in vivo.  相似文献   

5.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings.  相似文献   

6.
Phytochrome A (phyA) and phytochrome B photoreceptors have distinct roles in the regulation of plant growth and development. Studies using specific photomorphogenic mutants and transgenic plants overexpressing phytochrome have supported an evolving picture in which phyA and phytochrome B are responsive to continuous far-red and red light, respectively. Photomorphogenic mutants of Arabidopsis thaliana that had been selected for their inability to respond to continuous irradiance conditions were tested for their ability to carry out red-light-induced enhancement of phototropism, which is an inductive phytochrome response. We conclude that phyA is the primary photoreceptor regulating this response and provide evidence suggesting that a common regulatory domain in the phyA polypeptide functions for both high-irradiance and inductive phytochrome responses.  相似文献   

7.
8.
A blue light (cryptochrome) photoreceptor from Arabidopsis, cry1, has been identified recently and shown to mediate a number of blue light-dependent phenotypes. Similar to phytochrome, the cryptochrome photoreceptors are encoded by a gene family of homologous members with considerable amino acid sequence similarity within the N-terminal chromophore binding domain. The two members of the Arabidopsis cryptochrome gene family (CRY1 and CRY2) overlap in function, but their proteins differ in stability: cry2 is rapidly degraded under light fluences (green, blue, and UV) that activate the photoreceptor, but cry1 is not. Here, we demonstrate by overexpression in transgenic plants of cry1 and cry2 fusion constructs that their domains are functionally interchangeable. Hybrid receptor proteins mediate functions similar to cry1 and include inhibition of hypocotyl elongation and blue light-dependent anthocyanin accumulation; differences in activity appear to be correlated with differing protein stability. Because cry2 accumulates to high levels under low-light intensities, it may have greater significance in wild-type plants under conditions when light is limited.  相似文献   

9.
Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl- and K+. The postshrinking volume recovery is achieved by K+ and Cl- influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.  相似文献   

10.
UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species.  相似文献   

11.
To investigate the biological functions of phytochromes in monocots, we generated, by electric discharge particle bombardment, transgenic rice (Oryza sativa cv Gulfmont) that constitutively expresses the oat phytochrome A apoprotein. The introduced 124-kD polypeptide bound chromophore and assembled into a red- and far-red-light-photoreversible chromoprotein with absorbance spectra indistinguishable from those of phytochrome purified from etiolated oats. Transgenic lines expressed up to 3 and 4 times more spectrophotometrically detectable phytochrome than wild-type plants in etiolated and green seedlings, respectively. Upon photo-conversion to the far-red-absorbing form of phytochrome, oat phytochrome A was degraded in etiolated seedlings with kinetics similar to those of endogenous rice phytochromes (half-life approximately 20 min). Although plants overexpressing phytochrome A were phenotypically indistinguishable from wild-type plants when grown under high-fluence white light, they were more sensitive as etiolated seedlings to light pulses that established very low phytochrome equilibria. This indicates that the introduced oat phytochrome A was biologically active. Thus, rice ectopically expressing PHY genes may offer a useful model to help understand the physiological functions of the various phytochrome isoforms in monocotyledonous plants.  相似文献   

12.
As assayed by western blot analysis, red light induces the appearance of epitopes recognized by anti-phosphotyrosine antibodies in several pea nuclear proteins. The immunostaining is blocked by preadsorbing the antibodies with phosphotyrosine but not by preadsorbing them with phosphoserine or phosphothreonine. This light response is observed whether the red light irradiation is given to pea plumules or nuclei isolated from the plumules. The red-light-induced response seen in plumules is reversible by a subsequent far-red-light irradiation, indicating that the likely photoreceptor for this response may be phytochrome. By immunoblot analysis pea phytochrome A, but not phytochrome B, can be detected in proteins extracted from pea nuclear chromatin-matrix preparations. Phytochrome A and the protein bands immunostained by anti-phosphotyrosine antibodies can be solubilized from unirradiated pea chromatin by 0.3 M NaCl, but irradiating this preparation with red light does not induce the appearance of phosphotyrosine-like epitopes in any nuclear proteins. These results suggest that the association of phytochrome with purified pea nuclei is such that its conversion to the far-red light-absorbing form can induce a post-translational epitope change in nuclear proteins in vivo.  相似文献   

13.
We used the exaggerated short hypocotyl phenotype induced by oat phytochrome A overexpression in transgenic Arabidopsis to monitor the biological activity of mutant phytochrome A derivatives. Three different mutations, which were generated by removing 52 amino acids from the N terminus (delta N52), the entire C-terminal domain (delta C617), or amino acids 617-686 (delta 617-686) of the oat molecule, each caused striking dominant negative interference with the ability of endogenous Arabidopsis phytochrome A to inhibit hypocotyl growth in continuous far-red light ("far-red high irradiance response" conditions). By contrast, in continuous white or red light, delta N52 was as active as the unmutagenized oat phytochrome A protein in suppressing hypocotyl elongation, while delta C617 and delta 617-686 continued to exhibit dominant negative behavior under these conditions. These data suggest that at least three spatially discrete molecular domains coordinate the photoregulatory activities of phytochrome A in Arabidopsis seedlings. The first is the chromophore-bearing N-terminal domain between residues 53 and 616 that is apparently sufficient for the light-induced initiation but not the completion of productive interactions with transduction chain components. The second is the C-terminal domain between residues 617 and 1129 that is apparently necessary for completion of productive interactions under all irradiation conditions. The third is the N-terminal 52 amino acids that are apparently necessary for completion of productive interactions only under far-red high irradiance conditions and are completely dispensable under white and red light regimes.  相似文献   

14.
Phytochromes are plant photoreceptors that play a major role in photomorphogenesis. Two members of the phytochrome family have been characterized in some detail. Phytochrome A, which controls very low fluence and high irradiance responses, is rapidly degraded in the light, forms sequestered areas of phytochrome (SAPs), and does not exhibit dark reversion in monocotyledonous seedlings. Phytochrome B mediates red/far-red reversible responses, is stable in the light, and does not form SAPs. We report on the behavior in yeast of the phytochrome apoproteins of rice PHYA, tobacco PHYB, and chimeric PHYAB and PHYBA and on the behavior of the respective holoprotein adducts after assembly with phycocyanobilin chromophore (PHY*). SAP-like formation in yeast was not observed for PHYB, but was detectable for PHYA, PHYAB, and PHYBA. Rice PHYA* did not undergo dark reversion in yeast. Surprisingly, all other tested phytochrome constructs did exhibit dark reversion, including chimeric phytochromes with a short N-terminal part of tobacco PHYB or parsley PHYA fused to rice PHYA. Furthermore, the proportion of phytochrome undergoing dark reversion and the rate of reversion were increased for both the N terminus-swapped constructs and PHYBA*. These results are discussed with respect to structure/function analysis of phytochromes A and B.  相似文献   

15.
16.
Ambient light controls the development and physiology of plants. The Arabidopsis thaliana photoreceptor phytochrome B (PHYB) regulates developmental light responses at both seedling and adult stages. To identify genes that mediate control of development by light, we screened for suppressors of the long hypocotyl phenotype caused by a phyB mutation. Genetic analyses show that the shy (short hypocotyl) mutations we have isolated fall in several loci. Phenotypes of the mutants suggest that some of the genes identified have functions in control of light responses. Other loci specifically affect cell elongation or expansion.  相似文献   

17.
18.
In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.  相似文献   

19.
20.
Light has dual effects on the pineal melatonin; one is the entrainment of the circadian rhythm and the other is suppression of the melatonin synthesis. It is not known whether the entraining and suppressing effects of light are mediated by the same pathway or not. To elucidate the mechanism of the dual effects of light, (1) the sensitivity of the retina, (2) effects of acetylcholine agonist and, (3) the arrhythmicity induced by longterm continuous light, were studied by measuring melatonin continuously from a single rat by means of in vivo microdialysis. Pineal melatonin was suppressed by light more strongly at the late dark phase than at midnight, and by green light (520nm) than by red light (660nm). Pineal melatonin measured by microdialysis was decreased rapidly by a short light exposure and the melatonin rhythm was shifted on the following days. Microinjection of cholinergic agonist, carbachol, into the suprachiasmatic nucleus neither suppressed nor entrained the pineal melatonin rhythm. Immediately after the blinding, rats showed the circadian rhythm in pineal melatonin which had been abolished under long-term continuous light. While, it took several days for the locomotor rhythm to reappear. It is concluded that, (1) suppression of the pineal melatonin by light depends on the circadian phase and on the wavelength of light, (2) the threshold for light suppression is lower than that for phase-shift, (3) the melatonin rhythm starts to phase-shift on the following day of light pulse. (4) Acetylcholine is unlikely to be involved in the photic transmission both to the circadian clock and to the pineal, (5) arrhythmicity induced by long-term continuous light seems to be due to masking for the melatonin rhythm, and to uncoupling from the clock for the locomotor rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号