首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this paper, the CuO/TiO2 catalysts prepared by the deposition–precipitation (DP) method were extensively investigated for CO oxidation reaction. The structural characters of the CuO/TiO2 catalysts were comparatively investigated by TG-DTA, XRD, and XPS measurements. It was shown that the catalytic behavior of CuO/TiO2 catalysts greatly depended on the TiO2-support calcination temperature, the CuO loading amount and the CuO/TiO2 catalysts calcination temperature. CuO supported on the anatase phase of TiO2-support calcined at 400 °C showed better catalytic activity than those supported on TiO2 calcined at 500 and 700 °C. Among all our investigated catalysts with CuO loading from 2% to 12%, the catalyst with 8 wt% CuO loading exhibited the highest catalytic activity. The optimum calcination temperature of the CuO/TiO2 catalysts was 300 °C. The XRD results indicated that the catalytic activity of the CuO/TiO2 catalysts was related to the crystal phase and particle size of TiO2 support and CuO active component.  相似文献   

2.
Na-free anatase TiO2 film was prepared on soda-lime glass (SL-glass) from a TiF4 aqueous solution upon addition of boric acid at 60 °C. It was found that the as-prepared TiO2 film before calcination showed a higher photocatalytic activity than the calcined sample (500 °C). This could be attributed to the fact that the calcined TiO2 film contained decent Na+ ions, which was diffused from the SL-glass substrate into the TiO2 film during calcination, resulting in the decrease of photocatalytic activity.  相似文献   

3.
In the present work, nano-crystalline Ce0.9Gd0.1O1.95 (GDC) powder has been successfully prepared by a novel sol–gel thermolysis method using a unique combination of urea and PVA. The gel precursor obtained during the process was calcined at 400 and 600 °C for 2 h. A range of analyzing techniques including XRD, TGA, BET, SEM, EDS and TEM were employed to characterize the physical and chemical properties of obtained powders. GDC gel precursors calcined at 400 and 600 °C were found to have an average crystallite size of 10 and 19 nm, respectively. From the result of XRD patterns, we found that well-crystalline cubic fluorite structure GDC was obtained by calcining the precursor gel at 400 and 600 °C. It has been also found that the sintered samples with lower temperature calcined powder showed better sinterability as well as higher ionic conductivity of 2.21 × 10−2 S cm−1 at 700 °C in air.  相似文献   

4.
The effects of regeneration-phase CO and/or H2, and their amounts as a function of temperature on the trapping and reduction of NOX over a model and a commercial NOX storage/reduction catalyst have been evaluated. Overall, for both catalysts, their NOX removal performance improved with each incremental increase in H2 concentration. For the commercial sample, using CO at 200 °C, beyond a small amount added, was found to decrease performance. The addition of H2 to the CO-containing mixtures resulted in improved performance at 200 °C, but the presence of the CO still resulted in decreased performance in comparison to activity when just H2 was used. With the model sample, the presence of CO resulted in very poor performance at 200 °C, even with H2. The data suggest that CO poisons Pt sites, including Pt-catalyzed nitrate decomposition. At 300 °C, H2, CO, and mixtures of the two were comparable for trapping and reduction of NOX, although with the model sample H2 did prove consistently better. With the commercial sample, H2 and CO were again comparable at 500 °C, but mixtures of the two led to slightly improved performance, while yet again H2 and H2-containing mixtures proved better than CO when testing the model sample. NH3 formation was observed under most test conditions used. At 200 °C, NH3 formation increased with each increase in H2, while at 500 °C, the amount of NH3 formed when using the mixtures was higher than that when using either H2 or CO. This coincides with the improved performance observed with the mixtures when testing the commercial.  相似文献   

5.
TiO2 materials were prepared by sol–gel method and then impregnated with sulfuric acid and calcined using different temperatures and atmosphere (air and nitrogen). Systematic variation of these two experimental parameters makes possible to modulate the amount of surface sulfur from the impregnation procedure. The best photocatalyst for liquid phenol degradation was obtained after calcination at 700 °C in air, while gas toluene degradation optimum performance is obtained by calcination at 700 °C in nitrogen from 500 °C. Structural analysis of these materials by XRD, micro-Raman spectroscopy and FE-SEM shows that once calcined at 700 °C the material was a well-crystallized, high surface area anatase structure in all cases. The surface characterization by FTIR and XPS confirms the presence of a higher amount of sulfur species and acidic OH groups in samples partially calcined in nitrogen, and a low XPS O/Ti-atomic ratio with the O 1s peak shifted to higher binding energies (1.8 vs. 2 ± 0.1 and 530.4 eV vs. 529.8 eV, respectively, against the reference materials) for samples calcined at 700 °C, temperature at which most of sulfate species have been evolved. The paper presents an attempt to correlate the contribution of the observed structural defects within the anatase sub-surface layers and surface acidity to the different photoactivity behaviour exhibited for phenol liquid phase and toluene gas phase photodegradation.  相似文献   

6.
The NOx storage and reduction (NSR) catalysts Pt/K/TiO2–ZrO2 were prepared by an impregnation method. The techniques of XRD, NH3-TPD, CO2-TPD, H2-TPR and in situDRIFTS were employed to investigate their NOx storage behavior and sulfur-resisting performance. It is revealed that the storage capacity and sulfur-resisting ability of these catalysts depend strongly on the calcination temperature of the support. The catalyst with theist support calcined at 500 °C, exhibits the largest specific surface area but the lowest storage capacity. With increasing calcination temperature, the NOx storage capacity of the catalyst improves greatly, but the sulfur-resisting ability of the catalyst decreases. In situ DRIFTS results show that free nitrate species and bulk sulfates are the main storage and sulfation species, respectively, for all the catalysts studied. The CO2-TPD results indicate that the decomposition performance of K2CO3 is largely determined by the surface property of the TiO2–ZrO2 support. The interaction between the surface hydroxyl of the support and K2CO3 promotes the decomposition of K2CO3 to form –OK groups bound to the support, leading to low NOx storage capacity but high sulfur-resisting ability, while the interaction between the highly dispersed K2CO3 species and Lewis acid sites gives rise to high NOx storage capacity but decreased sulfur-resisting ability. The optimal calcination temperature of TiO2–ZrO2 support is 650 °C.  相似文献   

7.
SiO2–TiO2/montmorillonite composites were prepared under acidic, neutral and basic conditions and the solid acidity of the resulting composites were determined. All the SiO2/TiO2 ratio of the colloidal particles was set at 10 but the resulting SiO2/TiO2 ratios were significantly richer in TiO2. The XRD patterns of the acidic composite showed expanding and broadening of the (001) reflection by intercalation of colloidal SiO2–TiO2 particles, but the neutral and basic composites showed only broadening of the reflections and no intercalation. The specific surface areas of the acidic, neutral and basic composites (375, 237 and 247 m2/g, respectively) were much larger than of montmorillonite (6 m2/g). The average pore sizes were about 4, 15 and 50 nm, and the amounts of solid acidic sites measured by the NH3-TPD were 178, 95 and 86 µmol/g for the acidic, neutral and basic composites, respectively. The solid acid amount of the acidic composite was twice that of a commercial catalyst, K-10, (85 µmol/g) and much higher than the guest phase SiO2–TiO2 gel (16 µmol/g) or the host phase montmorillonite (6 µmol/g). The TPD peak temperatures reflect the acid strength, and were similar in all the samples, ranging from 175° to 200 °C.  相似文献   

8.
A number of nano-gold catalysts were prepared by depositing gold on different metal oxides (viz. Fe2O3, Al2O3, Co3O4, MnO2, CeO2, MgO, Ga2O3 and TiO2), using the homogeneous deposition precipitation (HDP) technique. The catalysts were evaluated for their performance in the combustion of methane (1 mol% in air) at different temperatures (300–600 °C) for a GHSV of 51,000 h−1. The supported nano-gold catalysts have been characterized for their gold loading (by ICP) and gold particle size (by TEM/HRTEM or XRD peak broadening). Among these nano-gold catalysts, the Au/Fe2O3 (Au loading = 6.1% and Au particle size = 8.5 nm) showed excellent performance. For this catalyst, temperature required for half the methane combustion was 387 °C, which is lower than that required for Pd(1%)/Al2O3 (400 °C) and Pt(1%)/Al2O3 (500 °C) under identical conditions. A detailed investigation on the influence of space velocity (GHSV = 10,000–100,000 cm3 g−1 h−1) at different temperatures (200–600 °C) on the oxidative destruction of methane over the Au/Fe2O3 catalyst has also been carried out. The Au/Fe2O3 catalyst prepared by the HDP method showed much higher methane combustion activity than that prepared by the conventional deposition precipitation (DP) method. The XPS analysis showed the presence of Au in the different oxidation states (Au0, Au1+ and Au3+) in the catalyst.  相似文献   

9.
We studied supercritical carbon dioxide fluid deposition of titanium oxide (TiO2) in trench features on Si substrates using a flow-type deposition apparatus from titanium diisopropoxide bis(dipivaloylmethanate), aiming at fabricating conformal films at a relatively low temperature. We investigated the deposition rate and step coverage under a fluid temperature from 40 to 60 °C, a pressure from 8.0 to 10.0 MPa, and a substrate temperature from 80 to 120 °C. They were dependent on the fluid density, indicating that the solubility difference between the bulk fluid and the neighborhood of the substrate surface plays a decisive role for the deposition. An excellent conformal filling of the trench features was achieved from the fluid of 60 °C under 8 MPa on the substrate kept at 80–100 °C. The XPS spectra of the deposited film suggested partial formation of TiO2, and the XRD spectra showed the existence of some crystalline TiO2 (anatase).  相似文献   

10.
Ce0.9Gd0.1O1.95 powders were synthesized by spray drying and successive calcinations. The phase purity, BET surface area, and particle morphology of as-sprayed and calcined powders were characterized. After calcination above 300 °C, the powders were single phase and showed a BET surface area of 68 m2/g when calcined at 300 °C. The conductivity, in air, of sintered pellets was measured by electrochemical impedance spectroscopy (EIS) and it was found to be comparable with literature values. The activation energy for the total conductivity was around 0.83 eV. The powder calcined at lower temperature showed better sinterability and higher total conductivity due to an increased bulk conductivity.  相似文献   

11.
The present study was undertaken to investigate the influence of ceria on the physicochemical and catalytic properties of V2O5/TiO2–ZrO2 for oxidative dehydrogenation of ethylbenzene to styrene utilizing CO2 as a soft oxidant. Monolayer equivalents of ceria, vanadia and ceria–vanadia combination over TiO2–ZrO2 (TZ) support were impregnated by a coprecipitation and wet impregnation methods. Synthesized catalysts were characterized by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature programmed reduction, transmission electron microscopy and BET surface area methods. The XRD profiles of 550 °C calcined samples revealed amorphous nature of the materials. Upon increasing calcination temperature to 750 °C, in addition to ZrTiO4 peaks, few other lines due to ZrV2O7 and CeVO4 were observed. The XPS V 2p results revealed the existence of V4+ and V5+ species at 550 and 750 °C calcinations temperatures, respectively. TEM analysis suggested the presence of nanosized (<7 nm) particles with narrow range distribution. Raman measurements confirmed the formation ZrTiO4 under high temperature treatments. TPR measurements suggested a facile reduction of CeO2–V2O5/TZ sample. Among various samples evaluated, the CeO2–V2O5/TZ sample exhibited highest conversion and nearly 100% product selectivity. In particular, the addition of ceria to V2O5/TZ suppressed the coke deposition and allowed a stable and high catalytic activity.  相似文献   

12.
A SrCo0.8Fe0.2O3 impregnated TiO2 membrane (TiO2-SrCo0.8Fe0.2O3 membrane) was successfully prepared using a sol-gel method in combination with a wet impregnation process. The membrane was subjected to a single gas permeance test using oxygen (O2) and nitrogen (N2). The TiO2 membrane was immersed in the SrCo0.8Fe0.2O3 solution, dried and then calcined to affix SrCo0.8Fe0.2O3 into the membrane. The effect of the acid/alkoxide (H+/Ti4+) molar ratio of the TiO2 sol on the TiO2 phase transformation was investigated. The optimal molar ratio was found to be 0.5, which resulted in nanoparticles with a mean size of 5.30 nm after calcination at 400 °C. The effect of calcination temperature on the phase transformation of TiO2 and SrCo0.8Fe0.2O3 was investigated by varying the calcination temperature from 300 to 500 °C. X-ray diffraction spectroscopy (XRD) and Fourier transform infrared (FTIR) analysis confirmed that a calcination temperature of 400 °C was preferable for preparing a TiO2-SrCo0.8Fe0.2O3 membrane with fully crystallized anatase and SrCo0.8Fe0.2O3 phases. The results also showed that polyvinyl alcohol (PVA) and hydroxypropyl cellulose (HPC) were completely removed. Field emission scanning electron microscopy (FESEM) analysis results showed that a crack-free and relatively dense TiO2 membrane (∼0.75 μm thickness) was created with a multiple dip-coating process and calcination at 400 °C. The gas permeation results show that the TiO2 and TiO2-SrCo0.8Fe0.2O3 membranes exhibited high permeances. The TiO2-SrCo0.8Fe0.2O3 membrane developed provided greater O2/N2 selectivity compared to the TiO2 membrane alone.  相似文献   

13.
Cu/ZnO/TiO2 catalysts were prepared via the coprecipitation method. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectrometry, temperature programmed reduction, and N2 adsorption. The catalytic activity of Cu/ZnO/TiO2 catalyst in gas phase hydrogenation of maleic anhydride in the presence of n-butanol was studied at 235–280 °C and 1 MPa. The conversion of maleic anhydride was more than 95.7% and the selectivity of tetrahydrofuran was up to 92.7%. At the same time, n-butanol was converted to butyraldehyde and butyl butyrate via reactions, namely, dehydrogenation, disproportionation, and esterification. There were two kinds of CuO species present in the calcined Cu/ZnO/TiO2 catalysts. At a lower copper content, the CuO species strongly interacted with ZnO and TiO2; at a higher copper content, both the surface-anchored and bulk CuO species were present. The metallic copper (CuO) produced by the reduction of the surface-anchored CuO species favored the deep hydrogenation of maleic anhydride to tetrahydrofuran. The deep hydrogenation activity of Cu/ZnO/TiO2 catalyst increased with the decrease of crystallite sizes of CuO and the increase of microstrain values. Compensations of reaction heat and H2 in the coupling reaction of maleic anhydride hydrogenation and n-butanol dehydrogenation were distinct.  相似文献   

14.
Nanosized anatase TiO2-coated kaolin composites were prepared by the chemical deposition method starting from calcined kaolin and TiCl4. The resultant TiO2 nanoparticles on the kaolin surfaces existed in anatase phase after calcination at 200, 400, and 900 °C for 1 h, respectively. The surfaces of the kaolin powders were uniformly coated by a monolayer of TiO2 nanoparticles. The higher calcination temperature was beneficial to formation of well crystallized anatase TiO2 nanoparticles. The light scattering indexes of the TiO2-coated calcined kaolin composites were two times higher than that of the kaolin substrate. XPS analysis shows that TiO2 coating layers anchored at the kaolin surfaces via the Ti-O-Si and Ti-O-Al bonds.  相似文献   

15.
Two series of supported Pd catalysts were synthesized on new mesoporous–macroporous supports (ZrO2, TiO2) labelled M (Zr and Ti). The deposition of palladium was carried out by wet impregnation on the calcined TiO2 and ZrO2 supports at 400 °C (Pd/Zr4, Pd/Ti4) and 600 °C (Pd/Zr6, Pd/Ti6) and followed by a calcination at 400 °C for 4 h. The pre-reduced Pd/MX catalysts were investigated for the chlorobenzene total oxidation and their catalytic properties where compared to those of a reference catalyst Pd/Ti-Ref (TiO2 from Huntsman Tioxide recalcined at 500 °C) and of a palladium supported on the fresh mesoporous–macroporous TiO2 (Pd/Ti). Based on the activity determined by T50, the Pd/Ti and Pd/Ti4 catalysts have been found to be more active than the reference one. Moreover activity decreased owing to the sequence: Pd/TiX  Pd/ZrX and in each series when the temperature of calcination of the support was raised. The overall results clearly showed that the activity was dependant on the nature of the support. The better activity of Pd/TiX compared to Pd/ZrX was likely due to a better reducibility of the TiO2 support (Ti4+ into Ti3+) leading to an enhancement of the oxygen mobility. Production of polychlorinated benzenes PhClx (x = 2–6) and of Cl2 was also observed. Nevertheless at 500 °C the selectivity in HCl was higher than 90% for the best catalysts.  相似文献   

16.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

17.
A series of cerium modified MnOx/TiO2 catalysts were prepared by sol–gel method and used for low-temperature selective catalytic reduction (SCR) of NOx with ammonia. The experimental results showed that NO conversion could be improved by doping Ce from 39% to 84% at 80 °C with a gas hourly space velocity (GHSV) of 40,000 h−1. This activity improvement may be contributed to the increase of chemisorbed oxygen and acidity after Ce doping. TPR results also verified that the redox property of Ce modified MnOx/TiO2 was enhanced at low-temperature.  相似文献   

18.
19.
Ammonium nitrate is thermally stable below 250 °C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 °C melting point, while acidic solids catalyze this reaction even at temperatures below 100 °C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 °C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 °C).  相似文献   

20.
In this study, Ni/Ce0.75Zr0.25O2 catalyst was doped with different amounts of Sn by co-impregnation method. The catalysts were characterized by BET, H2 chemisorption, XRD, TPR, TEM, XPS and tested for iso-octane partial oxidation (iC8POX) to H2 in the temperature range of 400–800 °C at atmospheric pressure. The results showed that most of Sn species were present on the surface of Ni particles and did not modify the reducibility of the support. Addition of a small amount of Sn (<0.5 wt.%) lowered the catalytic activity for iso-octane partial oxidation by less than 5% while the extent of carbon deposition was decreased by more than 50%. However, Sn loadings higher than 1 wt.% caused a massive drop in catalytic activity. This indicates that as long as the Ni surface is only partially covered with Sn species, the active sites for the partial oxidation of iso-octane remain intact, while the surface site ensembles required for carbon formation are blocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号