首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied systematically the effects of synthesis parameters in both precipitation and colloidal methods to obtain highly dispersed Pt/carbon catalyst and compared the characteristics of prepared catalysts with commercial ones. The average Pt particle size at optimum condition for 10–60 wt.% Pt/carbon was in the range 1.7–3.8 nm which was about 70–80% of the commercial catalysts at the same Pt loading. The Pt surface area was also 20–40% higher than those of the commercial catalysts. The activities of prepared catalysts, measured by a single cell unit, were comparable with those of commercial ones.  相似文献   

2.
阴极氧还原反应是燃料电池的核心反应之一。目前催化氧还原反应的催化剂通常是贵金属铂,但其普遍存在成本高、对甲醇耐受性差、易CO中毒等缺点,因此开展非贵金属催化剂的研究显得尤为重要。铁基催化剂因催化活性好、稳定性高、甲醇耐受性好、价格低廉等备受青睐,最有希望成为铂基催化剂的替代品。本文主要综述了几类铁基氧还原催化剂的研究现状、催化机理及活性影响因素,并在此基础上阐述了各类催化剂目前尚待解决的问题和发展方向。  相似文献   

3.
Platinum single crystal electrodes, Pt(h k l), represent ideal materials where studying surface sensitive reactions such as oxygen reduction reaction (ORR). Moreover, there is a great interest in testing carbon supported electrocatalyts mixed with Nafion® ionomer in order to directly evaluate catalysts under practical fuel cell conditions. Thus, we provide a first imaging attempt by scanning electrochemical microscopy (SECM) to locally evaluate the electrocatalytic activity during ORR on a Pt(1 1 1) single crystal electrode decorated with spots of commercial carbon supported platinum nanoparticles entrapped in Nafion®. Both electrocatalysts present the same chemical composition and then, total surface area, particle size and crystallographic orientation at the electrode surface are the effects studied. Our SECM images prove that the peroxide pathway can also be considered a relevant reaction route on platinum electrodes. We agree with some recent reports pointing the Nafion® content and the three-dimensional surface electrode area as key factors to control for achieving a proper evaluation of the apparent number of electrons exchanged during ORR.  相似文献   

4.
The development of high performance electrode materials is currently one of the main activities in the field of the low temperature fuel cells, fuelled with H2/CO or low molecular weight alcohols. A promising way to attain higher catalytic performance is to add a third element to the best binary catalysts actually used as anode and cathode materials. In Part I of this review an overview of the preparation and structural characteristics of Pt-based ternary catalysts was presented. This part of the review deals with the electrochemical properties of these catalysts regarding their CO tolerance and electrocatalytic activity for methanol and ethanol oxidation in the case of anode materials, and their activity for oxygen reduction and stability in fuel cell conditions when used as cathode materials.  相似文献   

5.
Ag/C catalysts with different loading were prepared using a colloidal route to obtain well dispersed catalysts on carbon, with a particle size close to 15 nm. An amount of 20 wt.% Ag on carbon was found to be the best loading in terms of current density and mass activity. The 20 wt.% Ag/C catalyst was then studied and the kinetics towards ORR was determined and compared with that of a 20 wt.% Pt/C catalyst. The number of exchanged electrons for the ORR was found to be close to four with the rotating disk electrode (RDE) as well as with the rotating ring disc electrode (RRDE) techniques. From the RDE results, the Tafel slopes b, the diffusion limiting current density inside the catalytic film (jlfilm) and the exchange current density (j0) were evaluated. The Tafel slopes b and diffusion limiting current densities inside the catalytic film (jlfilm) were found to be in the same order for both catalysts, whereas the exchange current density (j0), which is a suitable estimation of the activity of the catalyst, was at least 10 times higher at the Pt/C catalyst than at the Ag/C catalyst. The behavior of both catalysts in methanol containing electrolyte was investigated and it was found that at a low methanol concentration, the Pt/C catalyst was quasi-tolerant to methanol. But, at a high methanol concentration, the ORR at a Pt/C was affected. However, the Pt/C catalyst showed in each case better activity towards ORR than the Ag/C catalyst, even if the latter one was less affected by the presence of methanol than the former one.  相似文献   

6.
Pb and Sb modified Pt/C catalysts for direct formic acid fuel cells   总被引:1,自引:0,他引:1  
Xingwen Yu 《Electrochimica acta》2010,55(24):7354-7361
PtPb/C and PtSb/C bi-metallic catalysts were synthesized by chemical deposition of Pb or Sb on a commercial 40% Pt/C catalyst. The performances of catalysts with a range of compositions were compared in a multi-anode direct formic acid fuel cell in order to optimize compositions and evaluate the statistical significance of differences between catalysts. The catalytic activity for formic acid oxidation increased approximately linearly with adatom coverage for both PtPb/C and PtSb/C, to maxima at fractional coverages of ca. 0.7. At a cell voltage of 0.5 V, the currents at the optimum Pb or Sb coverages were ca. 8 times higher than at unmodified Pt/C. CO-stripping results indicate that the presence of Pb or Sb facilitates the oxidation of adsorbed CO. In addition, both metals appear to produce electronic effects that inhibit poison formation on the modified Pt surface.  相似文献   

7.
Peng Liu  Ge-Ping Yin  Ke-Di Cai   《Electrochimica acta》2009,54(26):6178-6183
The cathode degradation of a direct methanol fuel cell (DMFC) was investigated after a 240 h discontinuous galvostatic operation at 80 °C. The catalyst coated membrane (CCM) and the cathode diffusion layer were not combined so as to isolate electrochemical and mass transport processes. It was indicated by the EDS and SEM tests that the loss of the cathode electrochemical surface area (ESA) was associated with the decays of the Pt/C catalyst and the interfacial contact. Furthermore, Ru crossover and higher methanol crossover resulting from the anode failure aggravated the degradation of the cathode. On the other hand, the change of the pore structure led to a higher wettability of the cathode microporous layer. Therefore, the oxygen transport was suppressed due to the decrease of hydrophobic passages.  相似文献   

8.
Electrochemical impedance spectroscopy (EIS) was used to study the capacitance and ion transport properties of fuel cell catalyst layers. It was found that limiting capacitance correlates with active area. The capacitance per gram of catalyst was calculated and is proposed as a measure of catalyst utilization. Results obtained with catalyst layers immobilized on glassy carbon electrodes agree very well with results obtained with gas diffusion electrodes. EIS was also used to study ion conductivity and active area in fuel cell electrodes that contain the electroactive probe Os(bpy)32+. Together, these results validate the hypothesis that the non-ideal behavior of fuel cell electrodes is due to variations of conductivity across the layer, rather than variations in capacitance.  相似文献   

9.
Scanning electrochemical microscopy has been employed to spatially map the electrocatalytic activity of model proton exchange membrane fuel cell (PEMFC) catalyst films towards the hydrogen oxidation reaction (the PEMFC anode reaction). The catalyst films were composed of platinum-loaded carbon nanoparticles, similar to those typically used in PEMFCs. The electrochemical characterisation was correlated with a detailed physical characterisation using dynamic light scattering, transmission electron microscopy and field-emission scanning electron microscopy. The nanoparticles were found to be reasonably mono-dispersed, with a tendency to agglomerate into porous bead-type structures when spun-cast. The number of carbon nanoparticles with little or no platinum was surprisingly higher than would be expected based on the platinum-carbon mass ratio. Furthermore, the platinum-rich carbon particles tended to agglomerate and the clusters formed were non-uniformly distributed. This morphology was reflected in a high degree of heterogeneity in the film activity towards the hydrogen oxidation reaction.  相似文献   

10.
Recent progress in the ab initio quantum chemistry study of cathode oxygen reduction on fuel cell catalysts is reviewed with emphasis on density functional theory and ab initio molecular dynamics methods. The capabilities of these methods are illustrated using examples of oxygen adsorption on transition metals and alloys, and the reduction mechanism. Ab initio studies can calculate adsorption geometry, energy, the dissociation energy barrier, reversible potential, activation energy, and potential dependant properties for elementary electron transfer steps. Even though ab initio study in this field is still at an early stage, it has already demonstrated its predictive ability in the trend of adsorption energy on transition metals and alloys, and illustrated its potential in identifying better electrocatalysts.  相似文献   

11.
The subject of this study is the influence of traces of mercury present in the hydrogen originating e.g. from the amalgam technology of brine electrolysis on the lifetime of PEM-type fuel cell. Accelerated tests were used in order to record deterioration of laboratory fuel cells’ performance. The power output decrease observed was only partly reversible. As was proven by XPS spectroscopy, the cell performance deterioration originates from the interaction between mercury and the platinum catalyst. The lifetime of the fuel cell was assessed on the basis of the experiments performed as 7000 h for an average mercury concentration in the hydrogen of 10 μg N m−3. This is a sufficient value to permit utilization of the hydrogen from this source as a fuel for the fuel cell. It should be kept in the mind, however, that this value was obtained on the basis of the accelerated durability tests.  相似文献   

12.
The nanoscale graphite particles were prepared and the Pt catalysts supported on such graphites were developed for oxygen reduction in the polymer electrolyte membrane fuel cells. Catalytic activity and carbon corrosion of the developed catalysts were evaluated using rotating disc electrode techniques and results were compared with those of a state-of-the-art commercial E-TEK Pt catalyst supported on carbon black Vulcan XC72. The results showed that the particle distribution and the structure of the developed Pt nanoparticles supported on the nanoscale graphite were similar to those of the commercial catalyst. The accelerated degradation testing results showed that the electrochemical active surface area losses after 1500 cycles were 46.92% and 62.2% for the developed catalyst and the commercial catalyst, respectively, while mass activity losses were 45.3% and 84.2%, respectively. The temperature-programmed oxidation results suggest that the developed catalysts had better corrosion resistance than the commercial catalyst. The developed Pt catalysts had similar catalytic performance to the commercial catalyst; however, the developed catalysts had much better corrosion resistance than the commercial catalyst. Overall, nanoscale graphite can be a promising electrocatalyst support to replace the currently used Vulcan XC72 carbon black.  相似文献   

13.
A key component of a hydrogen fuel cell is a catalyst to dissociate dihydrogen to hydrogen atoms. In the present study, the adsorption of hydrogen on Pt/C fuel cell catalysts has been investigated by inelastic neutron scattering spectroscopy.

Monitoring a clean Pt(50%)/C catalyst with low energy neutron spectroscopy, after exposure to dihydrogen at 20 K, as it was heated to room temperature, showed three distinct temperature regimes: (i) a decrease in intensity from 10 to 60 K, (ii) a rise to a maximum between 60 and 120 K and then (iii) a slow fall-off towards room temperature. We assign the three regions as: (i) desorption of physisorbed dihydrogen, (ii) dissociation of dihydrogen to give an adsorbed layer and (iii) damping of the response by an increasing Debye–Waller factor.

The vibrational INS spectra of a series of Pt/C catalysts prepared under varying conditions were similar indicating that the same types of site are common to all the catalysts, although the relative proportions of each site are sample dependent. Features at 520, 950 and part of the intensity at 1300 cm−1 are assigned to hydrogen on (1 1 1) faces, in good agreement with single crystal data. The mode at 640 cm−1 is assigned as the doubly degenerate asymmetric stretch of Pt(1 0 0) faces with the symmetric stretch near 550 cm−1.

We assign the bending mode of the on-top site to the feature at 470 cm−1. The Pt–H stretch mode was observed at 2079 cm−1. This is a significant result: this is the first time that hydrogen on the on-top sites has been observed on nanosized platinum particles supported on high surface area carbon black. The width of the INS peak is surprisingly large and may give additional information on the type and relative proportions of the crystallographic faces present on the catalyst particles.  相似文献   


14.
Novel carbons from the Sibunit family prepared via pyrolysis of hydrocarbons [Yermakov YI, Surovikin VF, Plaksin GV, Semikolenov VA, Likholobov VA, Chuvilin AL, Bogdanov SV (1987) React Kinet Catal Lett 33:435] possess a number of attractive properties for fuel cell applications. In this work Sibunit carbons with BET surface areas ranging from ca. 20 to 420 m2 g−1 were used as supports for platinum and the obtained catalysts were tested as cathodes in a polymer electrolyte fuel cell. The metal loading per unit surface area of carbon support was kept constant in order to maintain similar metal dispersions (∼0.3). Full cell tests revealed a strong influence of the carbon support texture on cell performance. The highest mass specific activities at 0.85 V were achieved for the 40 and 30 wt.% Pt catalysts prepared on the basis of Sibunit carbons with BET surface areas of 415 and 292 m2 g−1. These exceeded the mass specific activities of conventional 20 wt.% Pt/Vulcan XC-72 catalyst by a factor of ca. 4 in oxygen and 6 in air feed. Analysis of the I–U curves revealed that the improved cell performance was related to the improved mass transport in the cathode layers. The mass transport overvoltages were found to depend strongly on the specific surface area and the texture of the support.  相似文献   

15.
Durability of Pt/C oxygen reduction reaction (ORR) catalyst remains one of the primary limitations for practical application of proton exchange membrane (PEM) fuel cells. In this work, the effects of relative humidity and oxygen partial pressure on platinum catalyst degradation were explored under potential cycling. At 60 °C, the loss rates of Pt mass and catalyst active surface area were reduced by about three and two times respectively when the relative humidity was lowered from 100% to 50%. The effects of oxygen partial pressure on cathode degradation were found to be insignificant. Cyclic voltammetry studies showed a slight increase in Pt electrochemical oxidation by water when the humidity increased from 50% RH to 100% RH. The rates of Pt dissolution were only slightly affected by change in humidity, and the accelerated catalyst degradation was ascribed to the increased Pt ion transport in the more abundant and larger water channel networks within the polymer electrolyte. Based on the parametric study results from our previous cathode degradation model, it was estimated that the diffusivity of Pt ions at fully humidified conditions was three times that of the value at 50% RH and 60 °C.  相似文献   

16.
We demonstrate that the power output from a PEM fuel cell can be directly regulated by limiting the hydrogen feed to the fuel cell. Regulation is accomplished by varying the internal resistance of the membrane-electrode assembly in a self-draining fuel cell with the effluents connected to water reservoirs. The fuel cell functionally operates as a dead-end design where no gas flows out of the cell and water is permitted to flow in and out of the gas flow channel. The variable water level in the flow channel regulates the internal resistance of the fuel cell. The hydrogen and oxygen (or air) feeds are set directly to stoichiometrically match the current, which then control the water level internal to the fuel cell. Standard PID feedback control of the reactant feeds has been incorporated to speed up the system response to changes in load. With dry feeds of hydrogen and oxygen, 100% hydrogen utilization is achieved with 130% stoichiometric feed on the oxygen. When air was substituted for oxygen, 100% hydrogen utilization was achieved with stoichiometric air feed. Current regulation is limited by the size of the fuel cell (which sets a minimum internal impedance), and the dynamic range of the mass flow controllers. This type of regulation could be beneficial for small fuel cell systems where recycling unreacted hydrogen may be impractical.  相似文献   

17.
Data on the performance of a direct borohydride fuel cell (DBFC) equipped with an anion exchange membrane, a Pt–Ru/C anode and a Pt/C cathode are reported. The effect of oxidant (air or oxygen), borohydride and electrolyte concentrations, temperature and anode solution flow rate is described. The DBFC gives power densities of 200 and 145 mW cm−2 using ambient oxygen and air cathodes respectively at medium temperatures (60 °C). The performance of the DBFC is very good at low temperatures (ca. 30 °C) using modest catalyst loadings of 1 mg cm−2 for anode and cathode. Preliminary data indicate that the cell will be stable over significant operating times.  相似文献   

18.
Bokkyu Choi 《Electrochimica acta》2010,55(28):8771-6701
Fuel cell/battery (FCB) systems are promising power generation/energy storage systems because of their bi-functionality as fuel cells and as secondary batteries. We investigated the required charging after the discharged manganese dioxide (MnOOH) by oxygen gas under the rest condition and during the fuel cell operation mode using manganese dioxide as a positive electrode for the FCB system. Electrochemical characterization was performed using cyclic voltammetry and galvanostatic measurements. Additionally, changes in the crystal structure and the chemical functional groups during the electrode reactions were monitored by X-ray diffractometry and Fourier transform infrared spectroscopy. The results indicated that MnOOH formed via the electrochemical discharge of manganese dioxide (MnO2) and that the oxyhydroxide can be chemically transformed back to MnO2 with gaseous oxygen (O2). The recharged MnO2 can be used as the cathode in a fuel cell with an O2 supply and it can also be electrochemically discharged without an O2 supply. In addition, we confirmed that MnO2 does not convert to Mn3O4 during the charge/discharge cycles if the redox reaction is maintained within a restricted range where a homogeneous process exists between MnO2 and MnOOH. The results in this study suggest that the FCB system can be constructed using MnO2 as the positive electrode and a metal hydride (MH) as the negative electrode, which can be rapidly charged to more than 70% of the theoretical capacity within 10 min using pressurized H2 and electrochemically discharged, in an alkaline electrolyte. This system possesses a high-power generation efficiency, a high-energy density and a high load-following capability.  相似文献   

19.
Dianxue Cao 《Electrochimica acta》2003,48(27):4021-4031
The surface of Pt nanoparticles was cleaned and saturated with hydrogen by treatment first with a 3% aqueous solution of H2O2 and then with hydrogen gas under water at room temperature. Reaction between the surface hydrogen and aqueous RuCl3 deposited 0.18 surface equivalents of Ruad onto the Pt nanoparticles. The deposition was repeated several times, with each reaction depositing ∼0.18 surface equivalents more Ruad onto the Pt-Ruad nanoparticles. The resulting Pt-Ruad nanoparticles were analysed using cyclic voltammetry, CO stripping voltammetry, and as catalysts for electrooxidation of MeOH in three-electrode experiments and in prototype direct methanol fuel cells. The optimum surface coverage (θRu) for electrooxidation of MeOH was ∼0.33 under these conditions.  相似文献   

20.
The electrochemical reduction of oxygen on various catalysts was studied using the thin-layer rotating disk electrode (RDE) method. High-surface-area carbon was modified with an anthraquinone derivative and gold nanoparticles. Polytetrafluoroethylene (PTFE) and cationic polyelectrolyte (FAA) were used as binders in the preparation of thin-film electrodes. Our primary goal was to find a good electrocatalyst for the two-electron reduction of oxygen to hydrogen peroxide. All electrochemical measurements were carried out in 0.1 M KOH. Cyclic voltammetry was used in order to characterise the surface processes of the modified electrodes in O2-free electrolyte. The RDE results revealed that the carbon-supported gold nanoparticles are active catalysts for the four-electron reduction of oxygen in alkaline solution. Anthraquinone-modified high-area carbon catalyses the two-electron reduction at low overpotentials, which is advantageous for hydrogen peroxide production.In addition, the polymer electrolyte fuel cell technology was used for the generation of hydrogen peroxide. The cell was equipped with a bipolar membrane which consisted of commercial Nafion 117 as a cation-exchange layer and FT-FAA as an anion-exchange layer. The bipolar membranes were prepared by a hot pressing method. Use of the FAA ionomer as a binder for the anthraquinone-modified carbon catalyst resulted in production of hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号