首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The aim of this study was to determine the conditions under which the alpha2-adrenoceptor agonist UK14304 produces vasoconstriction in the porcine isolated ear artery. 2. UK14304 (0.3 microM) produced a small contraction of porcine isolated ear arteries which was 7.8+/-3.3% of the response to 60 mM KCl. Similar sized contractions were obtained after precontraction with either 30 nM angiotensin II, or 0.1 microM U46619 (8.2+/-1.8% and 10.2+/-2.6% of 60 mM KCl response, respectively). However, an enhanced alpha2-adrenoceptor response was uncovered if the tissue was precontracted with U46619, and relaxed back to baseline with 1-2 microM forskolin before the addition of UK14304 (46.9+/-9.6% of 60 mM KCl response). 3. The enhanced responses to UK14304 in the presence of U46619 and forskolin were not inhibited by the alpha1-adrenoceptor antagonist prazosin (0.1 microM), but were inhibited by the alpha2-adrenoceptor antagonist rauwolscine (1 microM), indicating that the enhanced responses were mediated via postjunctional alpha2-adrenoceptors. 4. In the presence of 0.1 microM U46619 and 1 mM isobutylmethylxanthine (IBMX), 1 microM forskolin produced an increase in [3H]-cyclic AMP levels in porcine isolated ear arteries. Addition of 0.3 microM UK14304 prevented this increase. 5. The enhanced UK14304 response was dependent upon the agent used to relax the tissue. After relaxation of ear arteries precontracted with 10 nM U46619 and relaxed with forskolin the UK14304 response was 46.9+/-9.6% of the 60 mM KCl response, and after relaxation with sodium nitroprusside (SNP) the response was 24.8+3.3%. However, after relaxation of the tissue with levcromakalim the UK14304 response was only 8.2+/-1.7%, which was not different from the control response in the same tissues (12.2+/-5.6%). An enhanced contraction was also obtained after relaxation of the tissue with the cyclic AMP analogue dibutyryl cyclic AMP (23.2+/-1.3%) indicating that at least part of the enhanced response to UK14304 is independent of the ability of the agonist to inhibit cyclic AMP production. 6. Relaxation of U46619 contracted ear arteries with SNP could be inhibited by the NO-sensitive guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) indicating that production of cyclic GMP is necessary for the relaxant effect of SNP. However, ODQ had no effect on the relaxation of tissue by forskolin, suggesting that this compound does not act via production of cyclic GMP. Biochemical studies showed that while forskolin increases the levels of cyclic AMP in the tissues, SNP had no effect on the levels of this cyclic nucleotide. 7. In conclusion, enhanced contractions to the alpha2-adrenoceptor agonist UK14304 can be uncovered in porcine isolated ear arteries by precontracting the tissue with U46619, followed by relaxation back to baseline with forskolin, SNP or dibutyryl cyclic AMP before addition of UK14304. There was a greater contractile response to UK14304 after relaxation with forskolin than with SNP or dibutyryl cyclic AMP, suggesting that cyclic AMP-dependent and- independent mechanisms are involved in the enhancement of the UK14304 response.  相似文献   

2.
3.
In PC12 cells, forskolin as well as the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased intracellular adenosine-3',5'-cyclic monophosphate (cyclic AMP) levels, which peaked at 45-60 minutes and declined thereafter. Maximum levels were 3000 and 1700 pmol/10(6) cells during treatment with 10 microM forskolin or 0.1 microM NECA, respectively. Extracellular cyclic AMP rose with time, at mean rates of 24.7 (forskolin) and 11.3 (NECA) pmol/min/10(6) cells. With either drug, a linear correlation was obtained between the calculated time integral of intracellular cyclic AMP and the measured extracellular cyclic AMP levels, indicating that the outflow of cyclic AMP was sustained by a nonsaturated transport system. The ability of forskolin to increase intracellular and extracellular cyclic AMP levels was hindered in a concentration-dependent manner by 8-(p-sulfophenyl)theophylline (8-SPT). A similar inhibition was exerted by other two adenosine receptor antagonists, 8-cyclopentyl-1,3-dipropylxanthine and 3,7-dimethyl-1-propargylxanthine. The concentration-response curve to adenosine was shifted to the right by 25 microM 8-SPT, whereas that of forskolin was shifted downwards. Adenosine deaminase (ADA, EC 3.5.44, 1 U/mL) reduced the intracellular cyclic AMP response to forskolin by 68%, whereas the adenosine transport inhibitor, dipyridamole (10 microM), significantly increased 1 and 10 microM forskolin-dependent cyclic AMP accumulation. Erythro-9-(2-hydroxy-3-nonyl)adenine (10 microM), an inhibitor of ADA, and alpha,beta-methyleneadenosine 5'-diphosphate (100 microM), an inhibitor of ecto-5'-nucleotidase, did not alter forskolin activity. These results demonstrate that a cyclic AMP extrusion system operates in PC12 cells during adenylyl cyclase stimulation by forskolin and that this stimulation involves a synergistic interaction with endogenous adenosine. However, extruded cyclic AMP does not appear to significantly contribute to the formation of the endogenous adenosine pool.  相似文献   

4.
A beta-adrenoceptor agonist isoprenaline potently stimulated cyclic AMP formation in chick cerebral cortical slices. L-Noradrenaline (10-1000 microM) also increased cortical nucleotide synthesis, the effect being antagonized by beta-adrenoceptor blocker propranolol, and not affected by alpha 1- and alpha 2-adrenoceptor blockers, prazosin and yohimbine, respectively. Clonidine, a selective alpha 2-agonist, had no effect on cerebral cyclic AMP production stimulated by both isoprenaline and forskolin. However, clonidine (0.001-10 microM) concentration-dependently suppressed forskolin-driven cyclic AMP synthesis in intact chick pineal glands. In living chicks clonidine suppressed the nocturnal activity of cyclic AMP-dependent serotonin N-acetyltransferase, a rate-limiting enzyme in melatonin biosynthesis, the effect being prevented by yohimbine. The data suggest that the cyclic AMP generating system of the pineal gland, but not that of cerebral cortex in chick, is negatively regulated by alpha 2-adrenergic receptor-mediated signal.  相似文献   

5.
PURPOSE: Oxidative stress and other forms of injury to trabecular meshwork (TM) cells may contribute to changes seen with age and primary open-angle glaucoma. This study was designed to investigate if TM expresses alpha B-crystallin, a small heat-shock protein with chaperone activity, and whether it might be overexpressed under stress conditions. METHODS: The TM from human and monkey eyes, as well as organ and primary cell cultures derived from these eyes, were investigated for alpha B-crystallin by immunohistochemistry, two-dimensional gel electrophoresis, Northern and Western blot analysis. The TM cell cultures were stressed by heat shock (44 degrees C for 15 minutes) or hydrogen peroxide (200 mumol for 1 hour). Semiquantitation of alpha B-crystallin messenger RNA (mRNA) or protein was obtained by densitometry. RESULTS: In both species, alpha B-crystallin could be detected in fresh and cultured TM by two-dimensional gel electrophoresis in conjunction with Western blot analysis. Immunohistochemistry of fresh samples showed that alpha B-crystallin was expressed predominantly in the cribriform area. Protein expression was enhanced in 4- to 7-day organ cultures. Primary cultures from human TM cells expressed two sizes (approximately 0.8 and 1.1 kb) of alpha B-crystallin mRNA in Northern blots. In monkey TM cultures, a 0.8-kb band was observed, which comigrated with lens alpha B-crystallin. In both species, heat shock caused a significant increase in alpha B-crystallin mRNA with a peak after 4 hours. An increase in alpha B-crystallin mRNA also was observed after oxidative stress; however, the onset of mRNA induction was slower. After heat shock, but not after oxidative stress, a transient change in mRNA mobility was observed. Western dot blot analysis showed a 3.4-fold increase in protein 24 hours after heat shock and a 20-fold increase after 48 hours. No constitutive mRNA expression and only a minimal increase 4 hours after heat shock could be observed in simian virus 40 transformed cell lines from human TM. CONCLUSIONS: Overexpression of alpha B-crystallin might be an important mechanism for TM to prevent cellular damage associated with various stress conditions.  相似文献   

6.
7.
Glomerular mesangial cells are regarded as specialized smooth muscle cells located within the renal glomeruli and fulfilling important functions in glomerular physiology and pathophysiology. Here, we report that activation of the cyclic AMP signalling pathway by dibutyryl cyclic AMP, forskolin, or the beta 2-adrenergic receptor agonist salbutamol results in induction of apoptosis in mesangial cells. Activation of the apoptotic programme results in DNA fragmentation which is visible for most forms of apoptosis and is paralleled by enrichment of cytosolic DNA/histone complexes, an increasing number of cellular 3'-OH-fragmented DNA ends and typical nuclear chromatin condensation. Induction of apoptosis was found to be dependent on translation and independent of nitric oxide synthase activity.  相似文献   

8.
1. Sympathetic nerve stimulation causes contraction of the dilator muscle and the large arterioles of the iris via the activation of alpha 1B-adrenoceptors. We have investigated whether increases in adenosine 3': 5'-cyclic monophosphate (cyclic AMP) and the activation of receptors in these tissues can modulate these nerve-mediated contractions. 2. Increasing intracellular cyclic AMP with dibutyryl cyclic AMP (1 mM), forskolin (50 microM) or isobutylmethylxanthine (100 microM) produced relaxation of both the dilator and the arterioles, abolished the nerve-mediated constriction of the arterioles, but potentiated the nerve-mediated contraction of the iris dilator. 3. Pretreatment of the preparations with cholera toxin, to activate Gs permanently, caused a dilatation of the arterioles and abolished the nerve-mediated constriction but had no effect on the dilator muscle. 4. The beta-adrenoceptor agonist, isoprenaline (1 microM), the adenosine-A1,-A2 agonist, N-ethylcarboxamidoadenosine NECA (100 nM), in the presence of the A1-selective antagonist, 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 10 nM), and calcitonin gene-related peptide (CGRP, 10 nM) all separately caused a dilatation of the arterioles and abolished the nerve-mediated constriction, while only isoprenaline (1 microM) produced an effect on the dilator, i.e. a relaxation but a potentiation of the nerve-mediated contraction. These results suggest the presence of at least 3 types of receptor linked to Gs and an increase in cyclic AMP in the arterioles, i.e. beta-adrenoceptor, adenosine-A2 and CGRP, but only 1 Gs-linked receptor, i.e. beta-adrenoceptors, on the dilator muscle cells.2+ '  相似文献   

9.
Neuropeptide Y (NPY) has been shown to modulate blood pressure, heart rate and to inhibit the baroreceptor reflex at the level of nucleus tractus solitarius (NTS). The aim of this study was to examine effects of NPY and its related peptides on forskolin (1 microM)-stimulated cyclic AMP production in slices of the rat NTS. Each peptide was present at 0.3 microM. Pretreatment with NPY inhibited the stimulated increase in cyclic AMP levels in slices of rat NTS. Also [Pro34]NPY, an analog, which activates Y1, Y3 (and Y5) receptors inhibited the stimulated increase in cyclic AMP levels. However, pretreatment with the Y1 receptor-selective antagonist BIBP3226 (3 microM) did not affect the [Pro34]NPY-evoked inhibition of cyclic AMP levels. In addition, [Leu31,Pro34]NPY, an Y1 (and PP1/Y4 and Y5) receptor agonist did not inhibit the stimulated increase in cyclic AMP production. Also the Y2 receptor-selective agonist C2-NPY inhibited the stimulated elevation of cyclic AMP levels, while peptide YY, which does not recognize Y3 receptors did not significantly affect the stimulated cyclic AMP production. In conclusion, it seems that Y2 and Y3 receptors are coupled to inhibition of adenylate cyclase activity in the rat NTS.  相似文献   

10.
Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)-1alpha expression. Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration-dependent manner (1 nM-100 microM), MIP-1alpha release induced by bacterial lipopolysaccharide (LPS 10 ng ml(-1) LPS). The effect of NA was reversed by the selective beta-adrenoceptor antagonist propranolol (10 microM), but not by the alpha-adrenoceptor antagonist phentolamine (10 microM). In the concentration range of 10 nM-10 microM, isoproterenol, a beta-adrenoceptor agonist, but not phenylephrine (a selective alpha1-adrenoceptor agonist) or UK-14304 (a selective alpha2-adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP-1alpha production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1 - 10 microM), or by prostaglandin E2, (10 nM-10 microM) decreased MIP-1alpha release, suggesting that increased cyclic AMP may contribute to the suppression of MIP-1alpha release by beta-adrenoceptor stimulation. Northern blot analysis demonstrated that NA (100 nM-10 microM), Ad, isoproterenol, as well as rolipram (100 nM-10 microM) decreased LPS-induced MIP-1alpha mRNA accumulation. NA and Ad (1-100 microM) also decreased MIP-1alpha production in thioglycollate-elicited murine peritoneal macrophages. Pretreatment of mice with either isoproterenol (10 mg kg(-1), i.p.) or rolipram (25 mg kg(-1), i.p.) decreased LPS-induced plasma levels of MIP-1alpha, while propranolol (10 mg kg(-1), i.p.) augmented the production of this chemokine, confirming the role of a beta-adrenoceptor mediated endogenous catecholamine action in the regulation of MIP-1alpha production in vivo. Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP-1alpha expression in inflammation.  相似文献   

11.
Prostaglandin (PG) production by human amnion has been postulated to have a role in the onset of labor. Previous work by ourselves and others has demonstrated that oxytocin, phorbol esters and epidermal growth factor (EGF) increase PGE2 production in human amnion cells by activation of the Phospholipase C/Protein Kinase C (PKC) cascade system. The present study was undertaken to determine the effect of prior activation of the Adenylate Cyclase cascade system upon subsequent stimulation of PGE2 production by oxytocin, phorbol 12-myristate-13-acetate (PMA) or EGF in amnion cells and membrane discs. Isoproterenol, forskolin and dibutyryl cyclic adenosine monophosphate (dbcAMP) were utilized to activate the Adenylate Cyclase system at the receptor, enzyme and second messenger level. In control amnion cells, oxytocin, PMA and EGF each provoked dose dependent increases in PGE2 production. In cells preincubated with dbcAMP, forskolin or isoproterenol, agonist stimulated PGE2 production was markedly (50-90%) inhibited (p < 0.01). Inhibition was dose dependent upon preincubator concentrations. Maximal inhibition by adenylate cyclase activators occurred with 2-4 h of preincubation. In membrane discs, forskolin preincubation also inhibited oxytocin, PMA and EGF stimulation of PGE2 production. Activation of the Adenylate Cyclase system in human amnion cells or membrane discs inhibits the subsequent action of potent stimulators of PGE2 production in human amnion.  相似文献   

12.
1. Prostanoid receptor-mediated sensitization, or excitation, of sensory nerve fibres contributes to the generation of hyperalgesia. To characterize the prostanoid receptors present on sensory neurones, biochemical assays were performed on primary cultures of adult rat dorsal root ganglia (DRG) and the F-11 (embryonic rat DRG x neuroblastoma hybrid) cell line. 2. In DRG cultures, the IP receptor agonists, cicaprost and carbaprostacyclin (cPGI2) stimulated cyclic AMP accumulation. Prostaglandin E2 (PGE2) also increased cyclic AMP levels, but to a lesser extent, while carbocyclic thromboxane A2 (cTxA2), PGD2 and PGF2alpha had negligible effects. The rank order of agonist potency was cicaprost>PGE2=BMY45778=cPGI2=PGI2. In the F-11 cells, the rank order of agonist potency for the stimulation of cyclic AMP accumulation was: cicaprost>iloprost=cPGI2=PGI2=BMY45778>PGE2=cTXA2++ +. In DRG cultures, cicaprost induced significantly more accumulation of inositol phosphates than PGE2. 3. To examine the effects of prostanoids on C-fibre activity, extracellular recordings of d.c. potentials from the rat isolated vagus nerve were made with the 'grease-gap' technique. PGI2 (0.1 nM-10 microM) produced the largest depolarizations of the nerve. The rank order of agonist potency was: PGI2=cPGI2=PGE1>cTXA2>PGE2=PGD2=TXB2>PGF2alpha. 4. Prior depolarization of nerves with either forskolin (10 microM) or phorbol dibutyrate (1 microM) alone significantly reduced the response to PGI2 (10 microM), while simultaneous application of both forskolin and phorbol dibutyrate attenuated PGI2 responses almost completely. 5. Putative EP1 and/or TP receptor-selective antagonists had no effect on the responses to PGI2, cPGI2 or PGE2 in the three preparations studied. 6. Collectively, these data are consistent with a positive coupling of IP receptors to both adenylyl cyclase and phospholipase C in sensory neurones. These findings suggest that IP receptors play a major role in the sensitization of rat sensory neurones.  相似文献   

13.
1. The effects of the protein kinase C inhibitor, Ro 31-8220, on the responses of cultured bovine adrenal chromaffin cells to nicotine, phorbol 12, 13-dibutyrate (PDBu) and K+ have been investigated. 2. Tyrosine hydroxylase activity was measured in situ in intact cells by measuring 14CO2 evolved following the hydroxylation and rapid decarboxylation of [14C]-tyrosine offered to the cells. Secretion of endogenous adrenaline and noradrenaline was measured by use of h.p.l.c. with electrochemical detection. Cyclic AMP levels were measured in cell extracts by RIA. 3. Ro 31-8220 produced a concentration-dependent inhibition of 300 nM PDBu-stimulated tyrosine hydroxylase activity with an IC50 of < 2 microM and complete inhibition at 10 microM. It had no effect on the responses to forskolin. 4. Ro 31-8220 produced a concentration-dependent inhibition of 5 microM nicotine-stimulated tyrosine hydroxylase activity, adrenaline and noradrenaline secretion and cellular cyclic AMP levels, with an IC50 of about 3 microM and complete inhibition by 10 microM. At concentrations up to 10 microM, Ro 31-8220 had little or no effect on the corresponding responses to 50 mm K+. 5. A structural analogue of Ro 31-8220, bisindolylmaleimide V, that lacks activity as a protein kinase C inhibitor, had no effect up to 10 microM on PDBu-stimulated tyrosine hydroxylase activity or on nicotine-stimulated cyclic AMP levels or noradrenaline secretion and only marginal inhibitory effects on nicotine-stimulated tyrosine hydroxylase activity and adrenaline secretion. 6. A structurally related protein kinase C inhibitor, bisindolylmaleimide I, inhibited PDBu-stimulated tyrosine hydroxylase activity with an IC50 of < 1 microM and complete inhibition by 3 microM, but had essentially no effect on nicotine stimulated tyrosine hydroxylase activity or catecholamine secretion. 7. The results suggest that Ro 31-8220 is not only a protein kinase C inhibitor but is also a potent inhibitor of nicotinic receptor responses in adrenal chromaffin cells by a mechanism unrelated to protein kinase C inhibition. The results are consistent with Ro 31-8220 being a nicotinic receptor antagonist.  相似文献   

14.
1. Rat cultured aortic vascular smooth muscle cells (VSMC) express both cyclic GMP-inhibited cyclic AMP phosphodiesterase (PDE3) and Ro 20-1724-inhibited cyclic AMP phosphodiesterase (PDE4) activities. By utilizing either cilostamide, a PDE3-selective inhibitor, or Ro 20-1724, a PDE4-selective inhibitor, PDE3 and PDE4 activities were shown to account for 15% and 55% of total VSMC cyclic AMP phosphodiesterase (PDE) activity. 2. Treatment of VSMC with either forskolin or 8-bromo-cyclic AMP caused significant concentration- and time-dependent increases in total cellular cyclic AMP PDE activity. Using cilostamide or Ro 20-1724, we demonstrated that both PDE3 and PDE4 activities were increased following forskolin or 8-bromo-cyclic AMP treatment, with a relatively larger effect observed on PDE3 activity. The increase in cyclic AMP PDE activity induced by forskolin or 8-bromo-cyclic AMP was inhibited by actinomycin D or cycloheximide, demonstrating that new mRNA synthesis and protein synthesis were required. An analogue of forskolin which does not activate adenylyl cyclase (1,9-dideoxyforskolin) or an analogue of cyclic GMP (8-bromo-cyclic GMP) did not affect total cyclic AMP PDE activity. 3. Incubation of VSMC with 8-bromo-cyclic AMP for 16 h caused a marked rightward shift in the concentration-response curves for both isoprenaline- and forskolin-mediated activation of adenylyl cyclase. A role for up-regulated cyclic AMP PDE activity in this reduced potency is supported by our observation that cyclic AMP PDE inhibitors (IBMX, cilostamide or Ro 20-1724) partially normalized the effects of isoprenaline or forskolin in treated cells to those in untreated cells. 4. We conclude that VSMC cyclic AMP PDE activity is increased following long-term elevation of cyclic AMP and that increases in PDE3 and PDE4 activities account for more than 70% of this effect. Furthermore, we conclude that increases in cyclic AMP PDE activity contribute to the reduced potency of isoprenaline or forskolin in treated VSMC. These results have implications for long-term use of cyclic AMP PDE inhibitors as therapeutic agents.  相似文献   

15.
We previously reported that prostaglandin D2 (PGD2) specifically elevates intracellular cyclic AMP in nonchromaffin cells isolated from bovine adrenal medulla (Biochim. Biophys. Acta (1989) 1011, 75-80). Here we again found that PGD2 increased intracellular Ca2+ concentration ([Ca2+]i) in freshly isolated nonchromaffin cells and investigated the cellular mechanisms of PGD2-induced [Ca2+]i increase using the Ca2+ indicator fura-2 and a fluorescence microscopic imaging system. Treatment of the cells with PGD2 receptor agonists BW245C and ZK110841 resulted in both marked stimulation of cyclic AMP formation and an increase in [Ca2+]i. The [Ca2+]i response was also induced by bypassing of the receptor with forskolin, a direct activator of adenylate cyclase, but not by PGE2 or PGF2 alpha both of which are devoid of the ability to generate cyclic AMP in the cells. These cyclic AMP and [Ca2+]i responses induced by PGD2 were completely blocked by the PGD2 receptor antagonist BWA868C. The time-course of cyclic AMP production stimulated by PGD2 coincided with that of the [Ca2+]i increase. While the Ca(2+)-mobilizing hormone bradykinin stimulated a rapid inositol phosphate accumulation in nonchromaffin cells, PGD2 did not stimulate it significantly. Removal of extracellular Ca2+ markedly reduced the Ca2+ response to PGD2 in magnitude and duration, but did not alter the peak [Ca2+]i response to bradykinin. These results demonstrate that PGD2 receptor activation induces the increase in [Ca2+]i via cyclic AMP mainly by increasing the Ca2+ influx from the outside, unlike inositol trisphosphate which causes release of Ca2+ from internal stores.  相似文献   

16.
Human endothelial cells are injured by the action of leukocytes. We investigated the role of nitric oxide (NO) in the induction of injury to human pulmonary artery endothelial cells. NO has been a putative source of cytotoxic reactive oxygen species in some settings. Incubation of endothelial cells with neutrophils increased the release of lactate dehydrogenase activity and preloaded fura-2 from endothelial cells, indicating that neutrophils induce endothelial cell injury. This effect was augmented by treatment with carboxy-PTIO, which traps NO in the medium, or with L-NAME, an inhibitor of NO synthase. When endothelial cells were incubated with neutrophils stimulated by phorbol myristate acetate, an activator of protein kinase C, endothelial cell damage was further enhanced and the amount of NO in the medium was decreased. Dibutyryl cyclic AMP, a cell-permeable analogue of cyclic AMP, protected against neutrophil-induced endothelial cell injury and increased NO release into the medium. The effects of dibutyryl cyclic AMP were abrogated by treatment with H-89, a potent inhibitor of cyclic AMP-dependent protein kinase. The protective effect on neutrophil-induced endothelial cell injury by dibutyryl cyclic AMP was abolished by addition of carboxy-PTIO or L-NAME. Thus, our studies suggest that NO, presumably released from endothelial cells, protects against endothelial injury by activated neutrophils and the protective effect by cyclic AMP during coculture with activated neutrophils is mediated through the action of NO. However, when monocytes activated by lipopolysaccharide and IFN-gamma were used instead of neutrophils, endothelial cells were likewise injured, but a much higher level of NO was detected and injury was diminished by addition of carboxy-PTIO to the medium. These observations suggest that the high levels of NO released by activated monocytes contribute to endothelial injury, whereas low levels of NO protect endothelial cells against injury by neutrophils.  相似文献   

17.
The administration of sodium butyrate at 0.75 mM induced the functional differentiation of U-937 human promonocytic leukemia cells with negligible cell mortality. However, the drug rapidly caused cell death with characteristics of apoptosis when used at concentrations of 5 mM and above. In addition, butyrate stimulated the expression of the stress-responsive heat-shock protein 70 (HSP70) gene when applied at both differentiation-inducing and apoptosis-inducing concentrations. The induction of HSP70 by butyrate was inhibited by the simultaneous addition of cAMP-increasing agents (dibutyryl cAMP or the combination of forskolin plus theophylline). However, these agents did not prevent differentiation and only partially reduced apoptosis. Moreover, the DNA topoisomerase II inhibitor etoposide, which provoked U-937 cell differentiation and apoptosis with the same or greater efficiency than butyrate, failed to stimulate HSP70 expression. Finally, it was observed that cAMP-increasing agents also abrogated the induction of HSP70 and reduced the apoptosis caused by cadmium chloride, a typical inducer of the stress response. Taken together, these results indicate that HSP70 expression is not required for differentiation of promonocytic cells, as earlier proposed, and that butyrate probably triggers the stress response in these cells.  相似文献   

18.
1. CD19+ B lymphocytes were purified from the peripheral blood of normal and atopic subjects to analyse and compare the phosphodiesterase (PDE) activity profile, PDE mRNA expression and the importance of PDE activity for the regulation of B cell function. 2. The majority of cyclic AMP hydrolyzing activity of human B cells was cytosolic PDE4, followed by cytosolic PDE7-like activity; marginal PDE3 activity was found only in the particulate B cell fraction. PDE1, PDE2 and PDE5 activities were not detected. 3. By cDNA-PCR analysis mRNA of the PDE4 subtypes A, B (splice variant PDE4B2) and D were detected. In addition, a weak signal for PDE3A was found. 4. No differences in PDE activities or mRNA expression of PDE subtypes were found in B cells from either normal or atopic subjects. 5. Stimulation of B lymphocytes with the polyclonal stimulus lipopolysaccharide (LPS) induced a proliferative response in a time- and concentration-dependent manner, which was increased in the presence of interleukin-4 (IL-4). PDE4 inhibitors (rolipram, piclamilast) led to an increase in the cellular cyclic AMP concentration and to an augmentation of proliferation, whereas a PDE3 inhibitor (motapizone) was ineffective, which is in accordance with the PDE profile found. The proliferation enhancing effect of the PDE4 inhibitors was partly mimicked by the cyclic AMP analogues dibutyryl (db) cyclic AMP and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3',5'-cyclic monophosphorothioate, Sp-isomer (dcl-cBIMPS), respectively. However, at concentrations exceeding 100 microM db-cyclic AMP suppressed B lymphocyte proliferation, probably as a result of cytotoxicity. Prostaglandin E2 (PGE2, 1 microM) and forskolin (10 microM) did not affect B cell proliferation, even when given in combination with rolipram. 6. Inhibition of protein kinase A (PKA) by differentially acting selective inhibitors (KT 5720, Rp-8-Br-cyclic AMPS) decreased the proliferative response of control cells and reversed the proliferation enhancing effects of rolipram. 7. Importantly, PDE4 activity in LPS/IL-4-activated B lymphocytes decreased by about 50% compared to unstimulated control values. 8. We conclude that an increase in cyclic AMP, mediated by down-regulation of PDE4 activity, is involved in the stimulation of B cell proliferation in response to LPS/IL-4. B cell proliferation in response to a mitogenic stimulus can be further enhanced by pharmacological elevation of cyclic AMP.  相似文献   

19.
20.
The mechanism by which beta adrenergic agonist stimulate glycogenolysis in intact skeletal muscle was investigated in mice with the phosphorylase kinase deficiency mutation (I strain). Although extracts of I strain diaphragm muscle had only 3.7% of the phosphorylase kinase activity found in extracts of the control strain (C57BL), incubation of I strain hemidiaphragms in Krebs-Ringer bicarbonate buffer with either isoproterenol or epinephrine resulted in a stimulation of the rate of glycogenolysis. In C57BL diaphragms, the EC50 values for isoproterenol and epinephrine were 2 and 14 nM, respectively. With I strain diaphragms, dl-isoproterenol or l-epinephrine stimulated glycogenolysis as a linear function of the log of the drug concentration with no apparent plateau of response up to concentrations of 30 to 40 mugM. For each 10-fold increase in drug concentration, isoproterenol and epinephrine stimulated glycogenolysis in I strain muscles an additional 0.37 to 0.42 mg/g/hr, a slope in the concentration-response relationship of 0.17 and 0.37, respectively, of that measured in C57BL diaphragms at concentrations around the EC50. The highest glycogenolytic response measured in I strain hemidiaphragms (at 40 mugM isoproterenol) was 80% of the maximal catecholamine-stimulated glycogenolysis in C57BL diaphragms. Both 4 nM and 4 mugM isoproterenol, in a concentration-dependent manner, stimulated phosphorylase b to a conversion in I and C57BL diaphragms and increased cyclic adenosine 3':5'-monophosphate (cyclic AMP) concentrations. The glycogenolytic response to 10.1 nM dl-isoproterenol in both I and C57BL diaphragms was blocked by 34 nM l-propranolol but not by 34 nM d-propranolol. The response to 4 mugM isoproterenol was enhanced by the cyclic nucleotide phosphodiesterase inhibitors papaverine (27 mugM) or dl-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724, 3 mugM). From the results of these studies, we conclude: 1) Catecholamines stimulate glycogenolysis in skeletal muscle of I mice, as in C57BL mice, by interacting with the beta adrenergic receptor, thereby increasing tissue cyclic AMP concentrations and stimulating phosphorylase b to a conversion. 2) alternative hypotheses for the mechanism of the catecholamine-stimulated decrease in glycogen concentration in I skeletal muscle-inhibition of glycogen synthesis, hyposia and 5'-AMP stimulation of phosphorylase b activity-have been ruled out. 3) the activity of the mutant phosphorylase kinase, although it is only 3.7% of that in extracts of C57BL muscle, is sufficient to produce phosphorylase b to a conversion and thereby account for the glycogenolytic response of I strain muscle to catecholamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号