共查询到19条相似文献,搜索用时 78 毫秒
1.
提出一种基于高斯柯西变异算子的多父体杂交自适应演化算法,并用于求解约束函数优化问题。算法的特点:在随机搜索过程中引入三种新的多父体杂交算子加速收敛;基于高斯柯西变异算子提出一种新的产生新个体的方法;提出一种根据演化的进度能自动调整搜索范围的自适应机制。分析与实验表明,与其他算法相比,算法更具有通用性、高效性、鲁棒性,算法收敛速度和算法稳定性有明显改进。 相似文献
2.
为了提高人工蜂群算法求解复杂优化函数的全局搜索能力,提出了多父体杂交算法、差分进化算法和蜂群算法的混合蜂群算法(Hybrid artificial bcc colony algorithm, HABC) 。 HABC的核心在于,采用多父体杂交算子提高人工蜂群算法的全局搜索能力,通过淘汰相同个体保证群体的多样性,利用差分进化算子加快人工蜂群算法的收敛速度。高维函数优化问题的仿真结果表明,该算法全局搜索能力好,收敛速度快。 相似文献
3.
李红梅 《计算机工程与设计》2009,30(7)
为了克服惩罚函数法存在的罚参数难以选择和控制的主要缺陷,利用个体违反约束条件的程度函数,定义了约束强度指标,并设计了一种新的具有较强全局搜索能力的多父体杂交算子,从而提出一种基于约束强度的有效的演化算法.通过数值验证比较其性能优于现有的一些约束单目标优化演化算法. 相似文献
4.
多目标优化问题是演化计算领域的一个新热点。提出了一种求解Pareto最优解集的新算法,它既能较快地收敛,又能有效保持种群的多样性。新算法引入了“约束占优”的概念;采用多父体杂交算子(一种多父体非凸线性组合算子),最小淘汰压力策略(每次只淘汰群体中的一个最差个体),以及适应值共享的niche技术,这样既保证了近似解集对Pareto前沿的逼近,又保持了解集分布的均匀性。对一些代表性的BenchMark问题(包括凸的与非凸的、连续的与间断的、带约束的与不带约束的各种问题)数值试验都取得了很好的结果。 相似文献
5.
6.
动力学演化算法(DEA)是一种新颖的基于统计机制理论的演化计算技术.DEA通过驱动所有的个体运动和演化,可以有效地保持种群的多样性,但是在解决一些困难的函数优化问题时,DEA收敛速度慢并且易收敛于局部最优解.提出了一种改进的带有多父体杂交和差分变异算子的动力学演化算法(IDEA),有效地加快了DEA的收敛速度并且可以轻易逃离次优解.通过解决典型的数值函数优化问题来证实算法的有效性,实验结果表明,改进的动力学演化算法具有更高的收敛速度和收敛精度. 相似文献
7.
求解函数优化问题的一种高效混合演化算法 总被引:2,自引:2,他引:2
在郭涛算法的基础上设计出了一种求解函数优化问题的高效混合演化算法。新算法的主要特点有两个:一是引入演化策略中的高斯变异算子,二是引入自适应搜索子空间。高斯变异算子对群体作正态分布微调,防止早熟;引入自适应搜索子空间使群体在演化至接近全局最优解时能自动缩小搜索范围,从而达到加速收敛的目的。测试函数表明,该算法正确高效,求解精度极高,指正了文献[3]中的错误,所求函数全局最小值优于文献[3]记录的最好结果。 相似文献
8.
基于混合杂交与间歇变异的演化算法 总被引:1,自引:0,他引:1
通过混合使用多种杂交算子并辅之以间歇变异,提出了一种求解高维复杂函数全局优化问题的新型演化算法。用该算法求解了维数为100到400不等的典型测试函数,获得了比其它算法更精确或更接近最优的解,表明了算法的有效性。 相似文献
9.
基于混合杂交与间歇变异的约束优化演化算法 总被引:1,自引:0,他引:1
In solving constrained optimization problems with genetic algorithms, more emphases are laid on handling constraints than increasing the search capability of algorithms, which often leed to unsatisfied results as reported inmost literatures. This paper proposes a new evolutionary algorithm for constrained optimization, emphasizing moreon increasing the search capability of the algorithm by means of hybrid crossovers and intermittent mutation while adopting a simple constraint handling technique called direct comparison. Numerical experiments and comparisons show the ettectiveness of the proposed algorithm. 相似文献
10.
实数编码的演化算法求解TSP问题 总被引:1,自引:0,他引:1
对新近提出的求解TSP问题的实数编码的染色体表示方式进行了研究,为了去除存在于这种染色体表示方式中的冗余,对其进行了改动,然后设计了相应的多父体杂交算子和变异算子,完成了一个实数编码的求解TSP问题的演化算法。实验结果表明,这个算法是可行的,能够使解收敛到一定的程度,但还需要提高其收敛的能力。所以下一步的工作重点在于根据这种染色体表示方式的特点,进一步研究更合适的算子,从而得到更好的解。 相似文献
11.
提出一种新的快速演化算法,并把它运用于函数优化问题的求解中.新算法的特征是引入一种基于高斯变异.Cauchy变异以及Lévy变异的混合自适应变异算子,采用多父体搜索策略,提出随机排序选择策略.通过23个标准测试函数进行测试,结果表明,新算法在21个测试函数中的结果比FEP和EP好,具有稳定、高效和快速等特点. 相似文献
12.
利用双目标模型求解约束优化问题时,由于它们的最优解集并不相等,因此需要增加特殊机制确保求解双目标问题的算法收敛到原问题的最优解.为克服这一缺点,本文首先将约束优化问题转化为新的双目标优化模型,并证明了新模型的最优解集与原问题的最优解集相等.其次,以简单的差分进化为搜索算法,基于多目标Pareto支配关系的非支配排序为选择准则,提出了求解新模型的差分进化算法.最后,用10个标准测试函数的数值试验说明了新模型及求解算法的有效性. 相似文献
13.
近年来,越来越多的演化计算研究者对动态优化问题产生了很大的兴趣,并产生了很多解决动态优化问题的方法。提出一种新的动态演化算法,与传统的演化算法有所不同,它是建立在划分网格基础上的,故而称它为网格优化算法。通过测试典型的动态优化问题,并与经典的SOS算法进行比较,证明了算法的有效性。 相似文献
14.
个体基于量子概率幅进行编码,并将经典遗传算法的杂交算子用于量子演化算法中演化目标的优化,提出了混合量子演化算法。算法中对量子旋转角自适应更新,并首次引入了突变度的概念定义了自适应的变异算子,对量子个体的演化目标定期实施杂交,有效地交换并利用了演化信息,避免了未成熟收敛,提高了算法效率。数值优化问题的实验结果表明该算法优于QEA和CGA,并能以极大概率成功地解决“大海捞针”问题,且计算效率高,优化速度与CGA相当。 相似文献
15.
针对问题空间为全排列集合的一类组合优化问题,提出了一种混合进化算法。在自然进位制编码的基础上,算法采用了遗传算法的单点交叉算子和进化规划的高斯扰动算子,并运用了精英保留策略;算法实现时采用逐位运算法实现大数值运算,避免了运算溢出,减少了运算量。分析和模拟计算结果表明,新算法具有可行性、有效性和通用性。 相似文献
16.
求解全局优化问题的遗传退火算法 总被引:2,自引:0,他引:2
针对全局优化过程中,算法计算时间长、收敛时机不成熟、容易陷入局部最优等现象,在分析模拟退火算法和遗传算法优缺点的基础上提出了新的遗传退火混合算法,并将新的交叉、变异策略和诱导微调方法应用于算法中,通过10组非线性约束函数的测试表明,该算法能够在保持较高精度的前提下快速收敛。 相似文献
17.
求解多目标优化问题的分级变异量子进化算法 总被引:1,自引:0,他引:1
分析量子进化算法和免疫算子的特点,提出一种分级变异的量子进化算法,用于求解多目标优化问题,算法主要基于两个策略:首先,利用快速非受控排序和密度距离计算种群抗原-抗体的亲和度;然后,基于亲和度排序将个体进行分级,最优分级中的个体作为算法中的最优个体,大部分实施量子旋转更新和免疫操作,而剩余分级中的个体实施免疫交叉操作以获得新的个体补充种群,求解多目标0/1背包问题的实验结果表明了该算法的有效性. 相似文献
18.
提出了一个求解函数优化问题的高效演化算法,其设计思想由混合选择策略与分类变异簟略构成。该算法使用锦标赛选择、轮盘选择相结合的混合选择策略。变异运算分为三类进行:对最好个体实施模式搜索。对适应值排名靠前的三分之一的个体采用柯西变异,而其它个体使用普通变异算子。针对15个测试函数的实验取得了相当好的效果,实验结果表明该算法不仅收敛速度快.而且所求得的解达到或者以相当高的精度逼近最优解。 相似文献
19.
复杂过程全局进化算法是一种具有类似分散搜索的通用框架结构,能够高效完成全局搜索的新型进化算法。在该算法的基础上,提出了差分型复杂过程全局进化算法。差分型算法采用拉丁超立方体抽样生成多样性种群,并应用“最小欧几里德距离的最大值法”产生参考集Refset2,以保证参考集的多样性。采用差分变异和交叉策略替代原算法的线性合并,兼顾算法的收敛速度和种群的多样性。应用Nelder-Mead直接搜索法进行局部搜索,防止搜索过程在局部最优点附近反复。仿真结果表明差分型复杂过程全局进化算法,具有较高的搜索效率。 相似文献