首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用销-盘式摩擦磨损试验机研究了氧化铝增强氧化锆(ADZ)陶瓷材料/316L不锈钢摩擦副在去离子水和小牛血清2种不同介质润滑下的生物摩擦磨损行为,并利用SEM观察了磨损表面形貌。结果表明:与去离子水相比,在小牛血清润滑条件下ADZ陶瓷的摩擦因数和磨损率降低。在去离子水润滑条件下ADZ陶瓷材料的磨损为轻微磨损,相应的磨损机制为塑性变形和微犁削;而在小牛血清润滑条件下,ADZ陶瓷材料的磨损为微量磨损,磨损过程类似抛光作用。  相似文献   

2.
磨料对陶瓷摩擦材料摩擦性能的影响   总被引:1,自引:0,他引:1  
研究了3种不同硬度的磨料(碳化硅、氧化铝、硅酸锆)及其含量对陶瓷摩擦材料摩擦性能的影响.磨料在摩擦材料中的主要作用是改变摩擦和磨损机制,从无磨料时的粘合摩擦磨损机制转变为磨料存在的磨粒摩擦磨损机制.磨料的硬度越大,磨粒摩擦效应越大,提高摩擦因数的效果越好,但磨损率也越大,对摩擦盘的破坏也越严重.实验结果表明,磨料含量对摩擦因数的影响存在一个临界值,约为0.056(体积分数).磨料含量低于临界值,对摩擦因数的提高作用非常明显,而高于临界值,对提高摩擦因数的作用减弱.  相似文献   

3.
采用TE66微磨粒磨损实验机对医用Ti-6Al-4V钛合金在不同摩擦副条件下的微磨粒磨损行为进行研究,考察滑行距离、载荷对其微磨粒磨损的影响,通过观察磨斑形貌,分析其磨损机制。研究结果表明:Ti-6Al-4V合金的磨损量随滑移距离和载荷增加而增加,磨损率则相反,并且硬度较高的Si3N4陶瓷球对合金造成的磨损量和磨损率均低于ZrO2陶瓷球;在不同摩擦副条件下,随着滑行距离和载荷的增加,Ti-6Al-4V合金的磨损机制均由三体磨损转变为二三体混合磨损,所不同的是与Si3N4陶瓷球对摩时合金的混合磨损区域要少于与ZrO2陶瓷球对摩时。  相似文献   

4.
张兴元  陈希  陈红 《机械》2009,36(7):51-53
为研究振动对材料磨损的影响,对经过低温、中温、高温回火的42CrMo钢在自制的振动磨料磨损试验机上进行了振动磨损实验.结果表明,试样的塑性、硬度及磨料的振动参数综合影响其耐磨性,磨损量并不与磨料的振动频率成正比,磨粒的振动影响材料的磨损形貌.  相似文献   

5.
阐述了磨粒磨损的磨损机理,介绍了内燃机中磨粒的主要来源。分析了磨粒的形态特征(大小与形状)、磨粒浓度、磨粒的机械性能(硬度和强度)等参数对内燃机中的磨料磨损的影响,并提出了解决措施。  相似文献   

6.
用环-块摩擦磨损试验机在室温下研究了不同气孔率的氧化铝增强氧化锆陶瓷(ADZ)与高铬铸铁(HCCI)摩擦副的摩擦磨损性能。结果表明:在润滑介质为5%NaOH溶液和含质量分数2%SiO2颗粒的5%NaOH溶液条件下,陶瓷的摩擦因数不受气孔率的影响,陶瓷的磨损率随气孔率的增大而增加。小于临界孔径的微孔几乎不影响陶瓷的磨损,开、闭气孔的存在都对陶瓷的耐磨性有负面影响。  相似文献   

7.
采用热压烧结技术制备含4种不同固体润滑剂(MoS_2、h-BN、石墨和Sb_2S_3)的矿用树脂基制动材料。采用环-块式摩擦磨损试验机研究制动材料在不同载荷和速度下的摩擦磨损特性。采用扫描电镜和能谱仪分析材料物相和摩擦表面形貌,探讨其磨损机制。结果表明:含不同固体润滑剂的制动材料具有相似的硬度值,其维氏硬度约为0.60 GPa;在所有试验条件下,随着载荷和速度的增加,四种样品的摩擦因数与磨损率均有所升高,且4种样品均表现出不同程度的黏着磨损、塑性变形与转移膜的形成,其中含固体润滑剂Sb_2S_3的样品存在轻微的犁削和磨粒磨损;4种样品中,含10%(体积分数)石墨的样品表现出最低的摩擦因数与磨损率。  相似文献   

8.
为了研究切削过程中刀具的磨料磨损,通过热等静压技术分别制作了Al_2O_3含量为0%、0. 5%、1%和2%的珠光体钢工件,然后用同种刀具切削这些工件。通过扫描电镜观察实验后的刀具和磨屑,并加以分析,得到以下结论:刀具的后刀面磨损随着磨粒含量的增加而明显增大,而刀具的前刀面磨损会随磨粒含量的增加有微弱的减小。温度增加会使刀具磨损增加;金属切削过程中磨料磨损率在初始阶段较高,但随着切削时间的增加会明显降低。  相似文献   

9.
研究钻井液中纳米SiO_2含量对套管摩擦学性能的影响,用2Cr13钢材加工制作销盘,在含有不同纳米SiO_2的水基钻井液下进行摩擦试验,得出了销盘磨损率、摩擦系数、钻井液温度变化,并分析测试了实验后销盘的硬度、膜基结合强度、三维形貌和EDS表面元素组成。试验研究结果表明:钻井液套管的主要磨损类型为磨粒磨损和氧化磨损;在钻井液中加入纳米SiO_2可以显著降低套管磨损率;纳米SiO_2粒子在套管摩擦磨损过程中可以起到保护、承压、填充、抛光、屏蔽作用,降低套管的磨损率;在钻井液中加入2%的纳米SiO_2可获得最低磨损率,继续添加纳米SiO_2将降低表面膜的粘结强度进而提高套管磨损率。结论:在钻井液中加入纳米SiO_2可显著降低套管磨损,2%的纳米SiO_2添加量具有对套管的最佳润滑效果。  相似文献   

10.
以往,磨粒硬度对磨损影响的研究多是在滑动磨粒磨损条件下进行。本文通过浸蚀条件下磨拉硬度对材料耐磨性影响的研究,表明了浸蚀磨损与滑动磨粒磨损有着不同的规律:软于材料硬度的磨粒也对材料产生磨损,而当材料硬度超过磨枉硬度的1/3~1/5时即可改善材料的相对耐磨性。文中不仅研究了磨枉硬度对浸蚀磨损影响的一般规律,还对磨粒的制备、磨粒硬度的表示方法以及磨粒比重对浸蚀的影响等进行了探讨。  相似文献   

11.
In this study, the effects of volume fraction and particle size of boron carbide on the abrasive wear properties of B4C particle reinforced aluminium alloy composites have been studied. For this purpose, a block-on-disc abrasion test apparatus was utilized where the samples slid against the abrasive suspension mixture at room conditions. The volume loss, specific wear rate and roughness of the samples have been evaluated. The effects of sliding time, particle content and particle size of B4C particles on the abrasive wear properties of the composites have been investigated. The dominant wear mechanisms were identified using scanning electron microscopy. The results showed that the specific wear rate of composites decreased with increasing particle volume fraction. Furthermore, the specific wear rate decreased with increasing the size of particle for the composites containing the same amount of B4C. Hence, it is deduced that aluminium alloy composites reinforced with larger B4C particles are more effective against the abrasive suspension mixture than those reinforced with smaller B4C particles.  相似文献   

12.
The influence of graphite content on the dry sliding wear characteristics of Al6061/Gr composites along with Al6061/30SiC/Gr hybrid composites has been assessed using a pin-on-disc wear test. The composites with different volume fraction of graphite particles up to 13% were processed by in situ powder metallurgy (IPM) technique. The porosity and hardness of the resultant composites were also examined. It was found that an increase in the graphite content reduced the porosity, hardness, and friction coefficient of both types of composites. The hybrid composites were more porous and exhibited higher hardness and lower coefficient of friction at identical graphite contents. The increased graphite content in the range of 0–13 vol.% resulted in increased wear rate of Al/Gr composites. The Al/30SiC composite exhibited a lower wear rate as compared with the base alloy and graphite addition up to 9 vol.% improved the wear resistance of these hybrid composites. However, more graphite particles addition resulted in increased wear rate. SEM micrographs revealed that the wear mechanism was changed from mostly adhesive in the base alloy sample (Al/0Gr) to the prominently abrasive and delamination wear for Al/Gr and Al/SiC/Gr/composites.  相似文献   

13.
Abrasive wear of cast aluminium alloy-zircon particle composites   总被引:1,自引:0,他引:1  
The abrasive wear rates of particulate composites of an Al-11.8Si-4Mg alloy containing up to 0.35 volume fraction of zircon particles (average size, 100 μm) were measured on an 80 grit aloxide cloth sheet as a function of the volume fraction of zircon, the applied load and the number of passes over the abrasive paper. When the volume fraction of zircon is above a critical value of 0.09, the abrasive wear resistance (reciprocal of the wear rate) increases with the volume fraction of zircon according to the rule of mixtures. When the volume fraction is fixed, the abrasive wear resistance increases with the number of passes possibly because of blunting of the alumina particles of the abrasive cloth. No improvement in the abrasive wear resistance of composites over the matrix alloy was observed when the volume fraction of zircon was below 0.09. Scanning electron microscopy studies of the abraded surfaces of composites revealed fractured zircon particles but no evidence of filler particle pull-outs or debonding at the interface was obtained.  相似文献   

14.
P. Kulu  R. Tarbe  H. Kerdi  D. Goljandin 《Wear》2009,267(11):1832-1837
The results of the milling experiments of different mineral ores and laboratory wear testing with different abrasives have shown that the abrasivity of treated materials does not depend only on their hardness, but, to a great extent, on the particle shape of the materials. The grindability of materials milled by collision depends on the properties of materials as well on the treatment parameters (specific treatment energy). The aims of this investigation were (1) to study the abrasivity and the grindability of different minerals (granite, quartzite, etc.) and (2) to predict the relative wear resistance of the materials prospective for the grinding media of milling equipment, using a centrifugal type impact wear tester. Experiments conducted with abrasives of different hardness and with particles of different shape have shown that the wear rate of materials used as wear resistant materials in grinding devices depend more on the angularity of abrasive particles than on their hardness. It was shown that the grindability depends more on the composition and properties (fracture toughness, homogeneity of the structure) than on the hardness of the mineral ores. The main size reduction occurs at first collision, later in the multiple milling of mineral materials particle rounding takes place. The angularity parameter has good correlation with the wear rate in the case of the studied commercial steels as well as with metal matrix composites. Experiments with cermets showed that erosion does not practically depend on abrasive particle shape.  相似文献   

15.
Y. Xie  B. Bhushan 《Wear》1996,200(1-2):281-295
The objective of this research is to better understand the mechanisms of material removal in the free abrasive polishing process. Experiments were carried out to understand the effects of particle size, polishing pad and nominal contact pressure on the wear rate and surface roughness of the polished surface. A theoretical model was developed to predict the relationship between the polishing parameters and the wear rate for the case of hard abrasive particles sandwiched between a soft pad and a workpiece (softer than the abrasive particles). Experimental results and theoretical predictions indicate that the wear rate increases with an increase in particle size, hardness of polishing pad and nominal contact pressure, and with a decrease in elastic modulus of the polishing pad. Surface roughness increases with an increase in particle size and hardness of polishing pad, and nominal contact pressure has little effect on the roughness. A dimensionless parameter, wear index which combines all of the preceding parameters, was introduced to give a semi-quantitative prediction for the wear rate in free abrasive polishing. It is also suggested that when polishing hard material, in order to achieve a high materials removal rate and a smooth surface, it is preferable to use diamond as the polishing particles because of their high deformation resistance.  相似文献   

16.
The application of a ball-cratering method to test three-body abrasive wear of bulk materials in the presence of large abrasive particles has been investigated. Three high-Cr white cast irons (WCIs) with different material properties were used as wear samples. Abrasive slurries contained two types of abrasive particles, silica sand and crushed quartz. Silica sand and crushed quartz particles have similar chemical composition and hardness but differ in sharpness. Wear rates of WCI samples were determined and the worn surfaces were examined by optical microscopy, SEM and Talysurf profilometry.It was found that the ball-cratering test can differentiate between the wear resistances of materials with similar properties. The wear resistance of WCIs in the presence of silica sand increased with increasing the hardness of the wear sample and decreasing the size of carbides in the microstructure. Smaller silica sand particles caused less wear damage than larger silica sand particles, even though the smaller particles were slightly sharper than the larger ones. When silica sand and quartz particles of the same size were used, the angular quartz particles caused much higher wear than the rounded silica sand particles. Surface morphologies of the wear craters on the WCI samples were examined in an SEM and then compared with the morphologies of the worn surfaces from slurry pumps. It was found that the silica sand particles generated surface morphologies similar to those found in the worn slurry pumps. In these surfaces the matrix was preferentially worn out and hard carbides were protruding. Wear surface morphologies produced by the angular quartz particles were different. They consisted of numerous superimposed indents and the microstructure phases were not distinguishable. This indicates that the type of abrasive particles used in ball-cratering testing significantly affects the test outcomes in terms of wear rates and wear surface morphology.  相似文献   

17.
《Wear》2007,262(3-4):362-368
In this study, The wear behaviors of spray-deposited Al–Si/SiC composites, with Si contents between 9 and 20% and 15 vol.% SiC particles, were investigated by using a ring-on-ring test at room temperature under dry conditions. The microstructures, morphologies and phases of worn surfaces were analyzed by scanning electron microscope (SEM) and energy-dispersive X-ray microanalysis (EDAX), respectively. In addition, the wear mechanisms of the composites with different silicon content were discussed. It has been found that the wear rate decreases with the increase of hardness of composites due to silicon content increasing. The wear resistances of the composites are improved dramatically through thermomechanical treatment, compared to as-sprayed composite, due to increasing hardness and elimination of porosity. The wear mechanisms of composites vary with silicon content from abrasive to oxidative wear.  相似文献   

18.
Aluminium alloy matrix reinforced with 15 wt% SiC particles were prepared by powder metallurgy (PM) method. Wear behaviour of the composite was investigated to find out effects of operating variables and hardness in terms of the Taguchi approach, on a pin-on-disc machine and compared with the previous work on the composite produced by liquid metallurgy method [1]. Analysis of variance (ANOVA) was also employed to investigate which design parameters significantly affected the wear behaviour of the composite. The results showed that abrasive grain size exerted the greatest effect on the abrasive wear, followed by the hardness, which supported the previous work, but the percentage contribution was very different. The percentage contributions of the grain size and hardness were about 81.57 and 11.09, respectively. This might be because of production method of PM, particle size, model used by not considering the interaction effects, and testing condition. Moreover, larger particle sizes of the composites showed more wear resistance than those of others. As for the case of earlier work the percentage contributions of the grain size and type of material (hardness) were about 29.90, 17.90, respectively. However, the percentage contribution of interaction of abrasive size and hardness was about 30.90 while interaction of other factors was pooled.  相似文献   

19.
《Wear》2007,262(5-6):649-654
This paper fabricated tungsten carbide (WC) particles reinforced iron matrix surface composites on gray cast iron substrate using vacuum evaporative pattern casting (V-EPC) infiltration process, investigated dry three-body abrasive wear resistance of the composites containing different volume fractions of WC particles, comparing with a high chromium cast iron. The fabricated composites contained WC particles of 5, 10, 19, 27, 36, and 52 vol.%, respectively. The results in abrasive wear tests showed that, with the increase in the volume fraction of WC particles, the wear resistance of the composites first increased until reached the maximum when the volume fraction of WC was 27%, then decreased, and was 1.5–5.2 times higher than that of the high chromium cast iron. The changes of the wear resistance of the composites with the volume fraction of WC particles and the mode of material removal in dry three-body abrasive wear condition were analyzed.  相似文献   

20.
纳米和微米SiO2颗粒对PPESK复合材料摩擦学性能的影响   总被引:2,自引:1,他引:2  
邵鑫  薛群基 《机械工程材料》2004,28(6):39-42,45
用热压成型法制备了纳米、微米SiO2填充聚醚砜酮(PPESK)复合材料,考察了复合材料的硬度和抗弯强度,并研究了干摩擦条件下纳米、微米SiO2颗粒对复合材料摩擦磨损性能的影响,用扫描电镜观察分析了复合材料磨损表面形貌及磨损机理。结果表明:干摩擦条件下,纳米SiO2填充PPESK主要是轻微的磨粒磨损;而微米SiO2填充PPESK主要是严重的磨粒磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号