首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Yttria stabilized zirconia (7YSZ) solution precursor has been successfully used in the deposition of high durability thermal barrier coatings. In this paper, the thermal and crystallization behaviors of 7YSZ precursor were investigated by TG-DTA, FTIR and XRD. The results show that the precursor decomposition and crystallization temperatures greatly depend on heating rate e. g. 74°C for the crystallization temperature when tripping the heating rate. With a 10 °C/min heating rate, the weight loss due to precursor pyrolysis occurs predominantly at temperatures below 500 °C. A small weight loss due to the oxidation of residual carbon is detected from 800 °C to 950 °C. The complete crystallization of the tetragonal phase was determined to be around 500 °C by DTA and XRD analyses with a 10 °C/min heating rate. The crystallization kinetics and the activation energy of amorphous 7YSZ precursor were investigated by variable heating rate DTA. The calculated activation energy is 66.2 kJ/mol. The Avrami parameter value was determined to be 2.68, which indicates that crystallization nucleation and growth is diffusion-controlled. The crystalline phase of 7YSZ coatings deposited by the Solution Precursor Plasma Spray process was identified by XRD and Raman spectrum. The average YSZ grain size in the SPPS coating was determined to be 61 nm.  相似文献   

2.
The defects in materials play very important role on the effective thermal conductivity. Especially, the spatial and geometrical characteristics of pores are significant factors for the thermal insulation behavior of thermal barrier coatings (TBCs). In this paper, finite element method was employed to simulate the thermal transfer behavior of TBCs with different spatial and geometrical characteristic of pores. The simulation results indicate that the thermal insulation effect of TBCs would be enhanced when the pore size, pore volume fraction and pore layers which are perpendicular to the thickness direction increase and the space between the adjacent pores decreases. It is predicted that the effective thermal conductivity is different at different directions for the atmospheric plasma spray (APS) TBCs. A novel method, Computational Micromechanics Method (CMM), was utilized to depict the thermal transferring behavior of actual coatings. At the same time, model with different kinds of defects were established, and the effective thermal conductivity as the function of defect orientation angle, defect volume fraction and defect shape coefficient was discussed in detail. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation property.  相似文献   

3.
溶液注入热等离子体中直接制备纳米结构热障涂层   总被引:3,自引:0,他引:3  
蒋显亮  Nitin  PADTURE  Maurice  GELL  Danny  XIAO 《功能材料》2004,35(Z1):1597-1600
采用一种新的方法,将Y2O3稳定的ZrO2前驱体溶液雾化注入直流等离子体中直接制备热障涂层.扫描电镜、透射电镜、X射线衍射分析、激光闪烁法分别观察分析了涂层的显微组织、纳米晶粒、相结构和热导率,排水法、冷热冲击法分别检测了涂层密度和热循环性能.实验结果显示等离子体喷涂液体制备出来的热障涂层不具有层状组织,晶粒尺寸小于100nm,组成相为四方相,硬度为350左右,热导率在1.2~1.5 W/m·K范围,涂层中存在16%左右的孔隙率,具有比常规微米结构热障涂层更优越的热循环性能.分析结果表明液体注入热等离子体中的雾化沉积既区别于物理化学气相沉积,又区别于粉末注入热等离子体中的熔化沉积,属于表面工程技术下的交叉领域.  相似文献   

4.
Deposition of pure spinel phase, photocatalytic zinc ferrite films on SS-304 substrates by solution precursor plasma spraying (SPPS) has been demonstrated for the first time. Deposition parameters such as precursor solution pH, concentration, film thickness, plasma power and gun-substrate distance were found to control physico-chemical properties of the film, with respect to their crystallinity, phase purity, and morphology. Alkaline precursor conditions (7 < pH  10) were found to favor oxide film formation. The nanostructured films produced under optimized conditions, with 500 mM solution at pH  8.0, yielded pure cubic phase ZnFe2O4 film. Very high/low precursor concentrations yielded mixed phase, less adherent, and highly inhomogeneous thin films. Desired spinel phase was achieved in as-deposited condition under appropriately controlled spray conditions and exhibited a band gap of ~1.9 eV. The highly porous nature of the films favored its photocatalytic performance as indicated by methylene blue de-coloration under solar radiation. These immobilized films display good potential for visible light photocatalytic applications.  相似文献   

5.
利用等离子喷涂方法制备了ZrO2陶瓷涂层。X射线衍射分析、扫描电镜分析表明涂层主要由立方相和四方相组成,涂层呈现层状结构,比较致密,但有孔洞存在。实验结果表明:ZrO2陶瓷涂层具有较好的隔热效果,隔热效果与火焰温度呈线性变化;在高温气流冲刷条件下的线烧蚀速率为0.044mm/s,质量烧蚀率为4.10g/s,基本为气流冲刷失效。  相似文献   

6.
The basis of the hydrophobicity of lanthanide rare earth oxides(REOs)has been the subject of considerable debate.To explore this question,the wetting behaviors and surface compositions of hierarchicallystructured Yb2o3(one of the REOs)coatings and non-REO Al2o3coatings deposited via solution precursor plasma spray process were investigated in this work.The Yb2o3coatings were subjected to a number of post-deposition treatments including vacuum(1-15 Pa)treatment,Ar-plasma treatment,heat treatment(400℃),long-time air exposure and ultra-high vacuum(1×10-7Pa)treatment.Subsequent characterization showed that different post-deposition treatments resulted in different wetting behavior for the Yb2o3coatings which correlated with the content of hydrocarbon on the surface.Yb2o3coatings exhibited reversible transitions between superhydrophobicity after vacuum treatment and superhydrophilicity after Ar-plasma or heat treatment,linked to hydrocarbon adsorption onto and desorption from the surface.Yb2o3coatings after long-time air exposure and ultra-high vacuum treatment both remained hydrophilic and showed a smaller hydrocarbon content than coatings after vacuum treatment.Al2o3coatings with hierarchical surface structures similar to the Yb2o3coatings showed an increase in WCA to only-170 after the same vacuum treatment,indicating the REO has a much higher affinity for hydrocarbon adsorption than Al2o3,and that the content of hydrocarbon adsorbed on the surface of the REO determined the wetting behavior.  相似文献   

7.
A study of the effect of plasma spray processing parameters on the life of a two-layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 A onto uncooled tubes, cooled tubes and solid bars of Waspaloy in a lathe with one or eight passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a March 0.3 cyclic burner rig at 1130 °C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased the coating life.  相似文献   

8.
Abstract

Thermal barrier coatings have been used within gas turbines for over 30 years to extend the life of hot section components. Thermally sprayed ceramics were the first to be introduced and are widely used to coat combustor cans, ductwork, platforms and more recently turbine aerofoils of large industrial engines. The alternative technology, electron beam physical vapour deposition,(EB-PVD) has a more strain-tolerant columnar microstructure and is the only process that can offer satisfactory levels of spall resistance, erosion resistance and surface finish retention for aero-derivative engines.

Whatever technology is used, the thermal barrier must remain intact throughout the turbine life. Erosion may lead to progressive loss of TBC thickness during operation, raising the metal surface temperatures and thus shortening component life. Ballistic damage can lead to total TBC removal.

This paper reviews the erosion behaviour of both thermally sprayed and EB-PVD TBCs relating the observed behaviour to the coating microstructure. A model for the erosion of EB-PVD ceramics is presented that permits the prediction of erosion rates. The model has been validated using a high velocity erosion gas gun rig, both on test coupons and samples removed from coated components. The implications of erosion on component life are discussed in the light of experimental results and the model predictions.  相似文献   

9.
The present study deals with a numerical investigation of the residual stresses arising during the plasma-sprayed coatings process and their effects on the final stress state of the thermal barrier coatings system (TBCs) during service. A new thermo-mechanical finite element model (FEM) has been designed to function using a non-homogenous temperature distribution. Several phenomena are taken into account in the model such as: residual stresses generated during the spraying of coatings, morphology of the top-coat/bond-coat interface, oxidation at the top-coat/bond-coat interface, thermal mismatch of the material components, plastic deformation of the bond-coat and creep of all layers during thermal cycling. These phenomena induce local stresses in the TBCs that are responsible of micro-crack propagation during cooling and thermal cycling, specifically near the ceramic/metal interface.  相似文献   

10.
Ultra-high molecular weight polyethylene (UHMWPE) has remarkable properties in the bulk state and has substantial potential for use as a protective coating on metals. However, the molecular architecture responsible for these exceptional properties also causes difficulties in the formation of coatings by thermal spraying. This paper studies the effect of molecular weight, particle size and the influence of the addition of low-molecular weight binders on the structure and properties of combustion flame sprayed coatings. The flow of splats for each UHMWPE polymer and blends of selected polyethylenes was characterized by microstructural analysis and the performance of the resulting coatings evaluated by mechanical testing. A computational model was developed to calculate the temperature profiles of in-flight particles and to simulate the behaviour of particles during deposition. The model was applied to the polyethylene system and the experimental results show that the composition, the particle size and the process parameters are important factors in the optimization of coating quality.  相似文献   

11.
12.
Abstract

The paper describes aspects of thermal barrier coating (TBC) microstructure and the physical and mechanical properties which they influence. The stress-strain behaviour of air plasma sprayed (APS) TBCs is discussed, including the role of residual stresses. Failure phenomena as well as the TMF behaviour of TBC coated nickel base superalloys are described. The role of bond coat oxidation on TBC life is discussed as well as some mechanical properties of vacuum plasma sprayed MCrAlY-bond coatings. Finally, life prediction methodologies are addressed and discussed in terms of a critical strain accumulation concept. From this is derived an equation which covers time dependent effects such as bond coat oxidation and sintering. The paper concludes with a brief summary of the evolution of TBCs in aero and industrial gas turbines, and the failure modes in each. In particular the increased importance of erosion, in industrial gas turbines, due to water injection is highlighted.  相似文献   

13.
14.
15.
Conventional two-layered structure thermal barrier coatings (TBCs), graded thermal barrier coatings (GTBCs) and graded thermal barrier coatings with micropores were prepared onto superalloy DZ22 tube by electron beam physical vapor deposition (EB-PVD). Thermal gradient of the TBCs was evaluated by embedding two thermal couples in the surfaces of the tube and the top coat at different surrounding temperatures with and without cooling gas flowing through the tube. The results showed that higher thermal gradient could be achieved for the GTBCs with micropores compared to the two-layered structure TBCs and GTBCs. However, after the samples were heated at 1050°C, the thermal gradient for the GTBCs with or without micropores decreased with the increase of heating time. On the other hand, the thermal gradient for the TBCs increased with the increase of heating time. Cross-section observations by scanning electron microscopy showed that the change in microstructure was the main reason for the change of the thermal gradient.  相似文献   

16.
Thermal barrier coatings (TBCs) are now used on hot section components in most commercial turbine engines. They are used to enhance the temperature differential between the gas and the underlying metal surfaces. They comprise several layers designed to simultaneously provide thermal and oxidation protection. They have microstructures which afford sufficient strain tolerance that they remain attached despite severe thermomechanical cycling. Eventually, they spall. This happens because a thin, highly stressed, thermally grown oxide (TGO) develops beneath the TBC. In this article, the specific mechanisms that contribute to failure are described, with the motivation that this understanding can be used to design TBCs having greater reliability and durability.  相似文献   

17.
The thermal cycling behavior of plasma-sprayed ZrO2?12wt.%Y2O3 coatings was studied. Coatings were produced with and without bond coats of Ni-Cr-Al-Zr and in some cases the substrates were heated to above the optimum temperature prior to spraying. The coatings (attached to the substrate) were thermal cycled to 1200 °C and their cracking behavior was followed by acoustic emission (AE) techniques. It was possible to examine the failure mechanisms by statistical analysis of the AE data and to evaluate the influence of preheating and bond coating. It is shown that the AE spectrum changes when a bond coat is used because of the presence of microcracks which, in turn, dissipate energy and improve the coating integrity. The preheating effect is reflected by a decrease in the peak count rate and an increase in the temperature at which AE activity is initiated.  相似文献   

18.
Microstructure of zirconia-yttria plasma-sprayed thermal barrier coatings   总被引:2,自引:0,他引:2  
The objective of this paper is to report on the characterization of the highly complex microstructure of zirconia coatings, which arise as a result of the plasma-spraying process. The fine structure has been observed to change through the thickness of the coating, behaviour which has been related to the cooling rate and crystallization of the deposited material. Microstructural features such as an amorphous bond coat/ceramic interfacial film and a grain-boundary glassy phase, which are believed to have a significant effect upon coating properties such as adhesion and compliance, have been shown to be present.  相似文献   

19.
20.
Results are reported of the effects of surface melting (sealing) produced by a 1 kW laser in pulsed mode on the structure of plasma-sprayed 8wt% yttria partially stabilized zirconia (YPSZ); pulse lengths in the range of 1 to 90msec were used. Smooth surfaces were produced with shallow cracks at values of laser energy 5 to 40 J. Comparison of the data is made with results obtained by sealing using continuous wave CO2 laser processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号