首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al+Ba O2 +Fe2O3 +sucrose and O2 as reaction system and feeding gas, respectively, are used to prepare hollow multiphase ceramic microspheres(HMCMs) absorbent based on self-reactive quenching technology. The morphologies, particle size distribution,hollow structure and phase compositions were characterized by scanning electron microscope(SEM), X-ray diffraction(XRD) and size analysis. The results show that the quenching products possess high sphere-forming rate, and most of them are hollow structures. Owing to the self-burst,the particle size is between 40 and 70 lm. The phase compositions contain Al2O3, Fe3O4, Fe2O3, Ba2Fe14O22,Ba O2 and Ba Fe4O7. The microwave absorbing tests show that the lowest reflectivity of HMCMs is-19 d B. The frequency bands less than-10 d B are from 13.0 to15.8 GHz. The reasons for HMCMs possessing good microwave absorbing properties may be their magnetic and electrical properties as well as special hollow structure.  相似文献   

2.
Al-TiO2-Fe2O3-MnO2-Fe-Sucrose-Epoxy Resin as reaction system and self-reactive quenching technology which combines flame thermal spraying, self-propagating high-temperature synthesis and rapid solidification, were used to prepare three kinds of hollow multiphase ceramic microspheres (HMCMs) in different feeding gas (N2, O2) and dimension (coarse, fine). The characteristic results of three kinds of HMCMs indicated that various process parameters containing feeding gas and initial agglomerate size in this study can result in the change of surface organization, composition, morphology, and dimension. Investigation of microwave electromagnetic (EM) characteristics of three kinds of HMCMs showed that intrinsic characteristics play an important role in the determining the resulting properties. At 10-14.5 GHz, No. 3 HMCMs possess weak absorption intensity and narrow effective bandwidth (<?10 dB) owing to smaller dimension, but in higher-frequency band (14.5-17 GHz), an obvious absorption peak appears due to good EM match and nano-effects. Compared with No. 1 (O2 coarse) and No. 3 (O2 fine) HMCMs, enhanced absorption intensity and effective bandwidth (<?10 dB) were observed in No. 2 (N2 coarse) HMCMs. Enhancements of absorption intensity and effective bandwidth are associated with extra nitride (AlN, FeN), partial open microspheres, M-hexagonal crystal and micro-nano thick dendrite. No. 2 HMCMs presented excellent microwave-absorption property, with the minimum reflectivity (R L) of ?27.7 dB at 12.9 GHz. The effective bandwidth (<?10 dB) could reach to 4.1 GHz (10.9-15 GHz). This may be ascribed to the increased conductance loss, multiple scattering, magnetocrystalline anisotropy, and shape anisotropy.  相似文献   

3.
Functionalized Fe3O4 nanoparticles decorated with silica and chitosan have been prepared via two steps in this paper. The first step involved magnetite nanoparticles (Fe3O4) homogeneously incorporated into silica spheres using the modified Stöber process. Second, the silica-coated Fe3O4 nanoparticles were covered with the outer shell of cationic polyelectrolyte chitosan by a layer-by-layer assembly process. X-ray diffraction results indicated that the surface-modified Fe3O4 nanoparticles did not lead to phase change compared with the pure Fe3O4. Transmission electron microscopy studies revealed nanoparticles remained monodisperse, and silica shells have trapped more than one magnetic core. Average particle sizes of chitosan-coated Fe3O4/SiO2 microspheres are about 80–100 nm. In addition, super-paramagnetic properties of hybrid microspheres have also been detected by a vibrating-sample magnetometer. It may make the hybrid microspheres of important use in mild separation, enzyme immobilization, etc.  相似文献   

4.
Hollow single crystal Fe3O4 submicrospheres, which exhibit excellent magnetic properties, have been synthesized by a simple solvothermal process. These Fe3O4 particles have nanocrystallites with an average diameter of about 300 nm and are constructed with a hollow sphere structure that has an inside diameter of about 70 nm. The growth of the hollow Fe3O4 submicrospheres involves the cooperation of Ostwald ripening and oriented re-aggregation with increasing reaction time. As the oriented aggregation continues, adjacent nanocrystals fuse together along the (311) direction and the final product is formed as hollow spheres. Optional re-aggregation of the Fe3O4 hollow spheres may happen in the EG and N2H4·H2O solution. The synthesized Fe3O4 particles show different magnetic properties and can be adjustable with morphological variation.  相似文献   

5.
Li Fang  Tingyang Dai  Yun Lu   《Synthetic Metals》2009,159(19-20):2101-2107
The preparation of free-standing electromagnetic composite films based on conductive polypyrrole (PPy) hydro-sponge and the Fe3O4 ferrofluid have been successfully accomplished via self-assembly in the presence of β-cyclodextrin sulfate and under static condition. Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) are used to study the morphology of the PPy-Fe3O4 composite. Structural characterizations by Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) have proved the interactions between Fe3O4 and PPy chains. As-prepared films possess high electrical conductivity, remarkable magnetic response as well as appropriate flexility. Both the conductivity and magnetization of the composite, the latter in particular, depend strongly on the Fe3O4 content and thus can be optimized by adjusting the relative content of Fe3O4 in the composite. The combination of both magnetic and conducting activities of the resulting composite makes it be a potential candidate as functional material in electromagnetic devices, such as magnetic-controlled switches.  相似文献   

6.
Fe(OH)3 precursor sol was prepared by a sol-gel method. The precursor sol was dipped onto the absorbent cotton, and gel was formed on the absorbent cotton template after the volatilization of moisture. Fe2O3 microtubules were synthesized after the process of self-propagation or calcination. The phase, morphology, and particle diameter of the samples were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the magnetic properties of the samples were measured using a vibrating sample magnetometer (VSM). The external diameters of Fe2O3 microtubules ranged between 8 and 13 μm, and the wall thicknesses ranged between 0.5 and 2 μm. The type of the calcination method plays a significant role in developing the Fe2O3 phase and the variation in the magnetic properties in the sol-gel template complexing method. γ-Fe2O3 was synthesized by a self-propagation method. However, α-Fe2O3 was synthesized after calcination at 400°C for 2 h. The coercivity of the samples synthesized by calcination at 400°C for 2 h after self-propagation was found to increase significantly, thereby presenting hard magnetic properties.  相似文献   

7.
In this paper, we report on the bifunctional Fe3O4@SiO2@YP0.1V0.9O4:Dy3+ nanocomposites were prepared by the solvothermal method and sol-gel method. The structure, photoluminescence (PL) and magnetic properties of the nanocomposites were characterized by means of X-ray diffraction, scanning electron microscope, transmission electron microscope, PL excitation and emission spectra and vibration sample magnetometry. It is shown that Fe3O4@SiO2@YP0.1V0.9O4:Dy3+ nanocomposites with a core-shell structure present excellent fluorescent and magnetic properties. Additionally, the effects of the magnetic field on the luminescence properties of nanocomposites were discussed.  相似文献   

8.
In this paper, Mn0.5Zn0.5Fe2O4 nanopowders were prepared by mechanochemical processing of the mixture of two single phase ferrites, MnFe2O4 and ZnFe2O4. Room-temperature 57Fe Mössbauer spectroscopy was used to study the mechanically induced evolution of the ZnFe2O4/MnFe2O4 mixture submitted to the high-energy milling process. The Mössbauer spectrum of the ZnFe2O4/MnFe2O4 sample milled for 30 h revealed the presence of Mn0.5Zn0.5Fe2O4. The mean crystallite size of the mechanosynthesized mixed ferrite, estimated using Scherrer's formula, was found to be 14 nm.  相似文献   

9.
Core–shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core–shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet–visible (UV–Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was?~?4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~?11.26 emu/g) compared with Fe3O4 powder (~?13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of ??1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of?~???1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.  相似文献   

10.
A one-step hydrothermal procedure to form Fe3O4 nanospheres on chemically reduced graphene oxide (CRGO) surfaces was proposed, and these nanocomposites were used as substrates for enzyme immobilization. The as-prepared Fe3O4/CRGO nanocomposites were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), FT-IR and vibrating sample magnetometer. Fe3O4 microspheres are randomly distributed on graphene sheets, and the average diameter of Fe3O4 microspheres is about 260 nm. Horseradish peroxidase (HRP) was used as a model enzyme to investigate the immobilization activity. The HRP loading was 23.3 mg/g supports and retained 70% of the first use after ten cycles. The catalyzed capability of immobilized HRP was investigated and the immobilized HRP exhibited broader pH stability and excellent reusability. The results show that the Fe3O4/CRGO nanocomposites are appropriate for the immobilization of enzyme, and could have potential use in practical.  相似文献   

11.
MnFe2O4 octahedra have been prepared by reaction of Mn2+ ions and Fe3+ in alkaline condition via heat treatment of the coprecipitation product. The as-prepared powders were characterized in detail by conventional techniques such as powder x-ray diffraction; field emission electron microscopy and transmission electron microscopy. Vibrating sample magnetometer was used to determine the magnetic properties at room temperature. The results show that the MnFe2O4 octahedra were single crystals with cubic jacobsite structure and a size distribution from 0.8 to 1.0 μm. The octahedra obtained at 1100 and 1200 °C exhibited a ferromagnetic behavior with the coercive force (H c) value of 49.03 and 39.23 Oe, saturation magnetization (M s) value of 42.93 and 47.98 emu/g and remanent magnetization (M r) value of 2.16 and 2.55 emu/g, respectively. It is indicated that the heat treatment temperature has a significant effect on the formation of the jacobsite structure. Furthermore, a possible mechanism was also proposed to account for the growth of these products.  相似文献   

12.
Mica-based glasses in the SiO2-Al2O3-MgO-K2O-F system were prepared by a sintering method to investigate the effects of different amounts of hematite (Fe2O3) on thermal and sintering behaviors besides machinability of the glasses by means of differential thermal analysis (DTA), X-ray diffraction, and scanning electron microscope techniques. DTA analysis on fine and coarse glass powders indicated that the main crystallization mechanism in this system occurred in the bulk rather than the surface. Increasing Fe2O3 content to 5 wt.% improved machinability of the glass ceramic. Fe2O3 led to the disruption of the glass matrix and facilitated the nucleation of the crystalline phase. Precipitation of sellite (MgF2) crystals as heterogeneous nucleating sites for potassium phlogopite crystals acted as a second contribution to the machinability of the 5 wt.% Fe2O3-containing sample. However, introducing more than 5 wt.% Fe2O3 to the base glass prohibited the nucleation of MgF2, and as a result, large micas formed within the glass. This together with precipitation of cordierite aggregates in highly doped glass with Fe2O3 led to lower machinability in these samples.  相似文献   

13.
Laser cladding of the Fe3Al + TiB2/Al2O3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiB2/Al2O3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti3Al/Fe3Al + TiB2/Al2O3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al2O3 can react with TiB2 leading to formation of amount of Ti3Al and B. This principle can be used to improve the Fe3Al + TiB2 laser cladded coating, it was found that with addition of Al2O3, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.  相似文献   

14.
Highly biocompatible superparamagnetic Fe3O4 nanoparticles were synthesized by amide of folic acid (FA) ligands and the NH2-group onto the surface of Fe3O4 nanoparticles. The as-synthesized folate-conjugated Fe3O4 nanoparticles were characterized by X-ray diffraction diffractometer, transmission electron microscope, FT-IR spectrometer, vibrating sample magnetometer, and dynamic light scattering instrument. The in vivo labeling effect of folate-conjugated Fe3O4 nanoparticles on the hepatoma cells was investigated in tumor-bearing rat. The results demonstrate that the as-prepared nanoparticles have cubic structure of Fe3O4 with a particle size of about 8 nm and hydrated diameter of 25.7 nm at a saturation magnetization of 51 A·m2/kg. These nanoparticles possess good physiological stability, low cytotoxicity on human skin fibroblasts and negligible effect on Wistar rats at the concentration as high as 3 mg/kg body mass. The folate-conjugated Fe3O4 nanoparticles could be effectively mediated into the human hepatoma Bel 7402 cells through the binding of folate and folic acid receptor, enhancing the signal contrast of tumor tissue and surrounding normal tissue in MRI imaging. It is in favor of the tumor cells labeling, tracing, magnetic resonance imaging (MRI) target detection and magnetic hyperthermia.  相似文献   

15.
Fe3O4–carbon sphere composite was synthesized by a simple hydrothermal method. The as-synthesized products were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectrum (EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Raman spectrum. The complex permittivity and permeability of paraffin wax and Fe3O4–carbon sphere composite with different volume fraction of the composite were measured by vector network analysis. A wide region of microwave absorption was achieved due to dual dielectric and magnetic losses. When the matching thickness is 4 mm, the calculated reflection loss of the sample with 70% volume fraction of Fe3O4–carbon sphere composite exhibits a broad microwave absorption ranging from 2.5 to 18 GHz.  相似文献   

16.
方建筠  栗卓新 《焊接学报》2011,32(1):61-64,68
采用电弧喷涂制备TiB2陶瓷颗粒增强的NiCr-TiB2,NiCr-TiB2/Al2O3和304L-TiB2及304L-TiB2/Al2O3四种金属基复合涂层.采用光学显微镜、扫描电子显微镜(SEM)结合透射电子显微镜(TEM)观察和详细分析了TiB2陶瓷颗粒增强复合涂层的显微组织及微观结构,探讨涂层的形成机理.结果表...  相似文献   

17.
钴-铁氧体纳米粒子(CoFe2O4 NPs)通过改良的共沉淀法制备,CoFe2O4-SiO2磁性复合材料通过st?ber法合成,为了吸附重金属离子CoFe2O4-SiO2进行了氨基功能化。这种吸附剂的晶体结构、形貌、颗粒尺寸、化学组成和分子结构采用X射线衍射图谱(XRD)、扫描电子显微镜(SEM)以及傅里叶变换红外光谱(FTIR)进行表征。此复合材料具有优良的磁性能,由于其高的饱和磁化强度,磁铁可以将其在30秒内快速分离。同时,CoFe2O4 NPs的磁性能可以通过烧结温度进行调节,随烧结温度提高,磁性能增强。溶液的pH及反应时间对重金属离子吸附的影响进行了研究,此外此吸附剂对Cu (II)、Cd (II)、Mn (II) 和Zn (II)具有较高的吸附容量和去除率,这一结果使此复合材料可以潜在应用于废水中重金属离子的吸附上。  相似文献   

18.
In this work, we report the fabrication of core-shell Fe3O4@SiO2@MS (M = Pb, Zn, and Hg) microspheres through a wet-chemical approach. The Fe3O4@SiO2@MS microspheres have both ferromagnetic and photocatalytic properties. The sulfide nanoparticles on the surfaces of microspheres can degrade organic dyes under the illumination of UV light. Furthermore, the microspheres are easily separated from the solution after the photocatalytic process due to the ferromagnetic Fe3O4 core. The photocatalysts can be recycled for further use with slightly lower photocatalytic efficiency.  相似文献   

19.
This work provides new insight and evidence that challenges and extends the accepted view of the oxidation behaviour of Kovar (ASTM-15). Specimens of 2 mm diameter Kovar wire were oxidised in air at 700 or 800 °C for 10 min. The resulting oxide layers were analysed by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, scanning transmission electron microscopy and Raman spectroscopy. Oxide layers of approximately 2 and 4 µm thickness were formed at 700 and 800 °C, respectively. These were found to contain iron, cobalt and traces of nickel. The combination of analysis techniques revealed that the oxide contains Fe2O3 in addition to (Fe, Co, Ni)3O4, a spinel oxide, in contrast to the combinations of Fe3O4, Fe2O3 and FeO that are typically reported. The oxide layer was found to be complex, consisting of multiple layers with different compositions, which is overlooked in the existing literature.  相似文献   

20.
In order to obtain high comprehensive performance hollow ceramic microspheres (HCMs), used Al-Cr2O3 as the main reaction system, HCMs were prepared by Self-reactive flame quenching technology in Ar2 and N2 atmosphere respectively. Effects of the two different atmospheres on synthesizing HCMs were studied. Results show that in Ar2 atmosphere, because of incomplete reaction of agglomerate powders, porous particles with hollow structure and smooth-faced HCMs constitute the products. However in N2 atmosphere, because agglomerate powders react completely, all of them become smooth-faced HCMs. Results above show that experiment atmosphere is a important parameter to synthesize HCMs and to a great extent influences reaction process of agglomerate powders in the flame field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号