首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that Medium-Pressure (MP) ultraviolet (UV) lamps have an advantage over low-pressure (LP) lamps for water disinfection in terms of the photoreactivation of pure cultured bacteria. However, few studies have investigated the behavior of microorganisms in wastewater. Hence, in this study, the degree of photoreactivation, after UV exposure using both LP and MP lamps, in municipal wastewater samples was examined under a variety of conditions. Pure cultured Escherichia coli was also used to provide a comparison with previous studies.E. coli was found to undergo photoreactivation after both LP and MP exposure. The Colony Forming Ability (CFA) ratios were 0.60 and 0.32, and the percentage of photoreactivation was 50% and 20%, respectively, for LP and MP lamps with a germicidal UV dose of 5 mJ/cm2. However, the advantage of the MP lamp was diminished for larger UV doses, since no photoreactivation was detected when the UV dose was 15 mJ/cm2 for either LP or MP lamps. The microorganisms present in wastewater showed similar results to those of E. coli, however, no significant difference was found between the use of either a LP or a MP lamp. Also, when a UV dose of 40 mJ/cm2 was applied, the percentage photoreactivation was less than 1%, no matter which type of lamp was used. From this work, it is concluded that the selection of the type of UV lamp for wastewater treatment plants, as regards photoreactivation of total coliforms, is not critical as long as the applied germicidal UV dose is greater than 40 mJ/cm2.  相似文献   

2.
Zimmer JL  Slawson RM  Huck PM 《Water research》2003,37(14):3517-3523
This study investigated the level of inactivation and the potential for Cryptosporidium parvum to repair following low doses (1 and 3mJ/cm(2)) of ultraviolet (UV) irradiation from both low- and medium-pressure UV lamps. Cryptosporidium parvum oocysts suspended in phosphate buffered saline were exposed to UV using a bench-scale collimated beam apparatus. Oocyst suspensions were incubated at 5 degrees C or 25 degrees C under light and dark conditions up to 120 h (5 days) following exposure to UV irradiation, to examine photoreactivation and dark repair potential, respectively. Cryptosporidium parvum infectivity was determined throughout the incubation period using an HCT-8 cell culture and an antibody staining procedure for detection. No detectable evidence of repair was observed after incubation under light or dark conditions following either LP or MP UV lamp irradiation.  相似文献   

3.
Sakai H  Oguma K  Katayama H  Ohgaki S 《Water research》2007,41(15):3458-3464
UV irradiation could be an alternative growth inhibition treatment against toxic Microcystis blooms in lakes. This study examined the effect of UV irradiation on the release of toxic intracellular microcystin. Conventional algicidal treatment (e.g. copper sulfate) was known to cause rapid release of intracellular microcystin and additional problems, but no studies have examined the case of UV treatment. A pure culture of Microcystis aeruginosa PCC 7806 was exposed to monochromatic low-pressure or polychromatic medium-pressure UV lamps. Irradiated pure culture suspension was subsequently incubated for 14 days under white light fluorescent lamps. During incubation, profiles of the number of cells, intracellular and extracellular microcystin concentration were determined. After the UV exposure, the number of cells gradually diminished; the net log cell reduction after 6 days of incubation was 1.6 log or 2.0 log for 600 mJ/cm2 of LP or MP UV irradiation, respectively. There were three findings for UV irradiation effects on the release of intracellular microcystin. First, because UV exposure can inhibit increases in the number of cells for about 6 days, it inhibited the increase of microcystin concentrations in water. Second, intracellular microcystin was gradually released into the surrounding water through a gradual reduction in the number of cells, preventing a rapid increase of microcystin concentration in water. Microcystin concentration in water was not significantly higher in UV-irradiated samples than non-UV-irradiated sample. Third, UV irradiation was able to degrade intracellular microcystin; it was reduced from 24.6 to 7.06 or 7.16 fg/cell by 600 mJ/cm2 of LP or MP UV irradiation, respectively. This contributed to reduce increases in microcystin concentrations in water. UV treatment can inhibit Microcystis growth and reduce intracellular microcystin content without rapid release of intracellular microcystin.  相似文献   

4.
A pure culture of Microcystis aeruginosa or Anabaena variabilis, the representatives of water blooming algae, was exposed to low-pressure (LP) or medium-pressure (MP) UV lamps. Irradiated pure culture suspension was subsequently incubated for 7d under white light fluorescent lamps. During incubation, profiles of the number of cells, DNA damage and photosynthetic activity were determined. When UV fluence was 600mJ/cm(2), M. aeruginosa cell numbers decreased throughout the 7-d incubation period, to produce 1.5log reduction (LP) or 1.2log reduction (MP) compared with control. The amount of DNA damage was 2.02x10(-4) ESS/base (LP) and 3.42x10(-4) ESS/base (MP) just after UV irradiation, which became 0.05x10(-4) ESS/base and 0.23x10(-4) ESS/base, respectively, after 3d incubation. However, cell number kept decreasing, even after DNA repair. Photosynthetic activity decreased by 1.5log within 1d (LP) or 3d (MP). Thus, reduction in photosynthetic activity could contribute to the reduction in M. aeruginosa cell numbers. A. variabilis cell numbers reduced by 2.3log (LP) or 2.2log (MP) during the 7-d incubation period; however, after DNA damage repair, cell number began to increase. The amount of DNA damage was 6.07x10(-4) ESS/base (LP) and 4.48x10(-4) ESS/base (MP) just after UV irradiation, which became 0.23x10(-4) ESS/base and 0.40x10(-4) ESS/base, respectively, after 3d incubation. No reduction was observed in photosynthetic activity/cell. Therefore, DNA damage is the main contributor of the reduction in cell number of A. variabilis.  相似文献   

5.
Pulsed UV (PUV) is a novel UV irradiation system that is a non-mercury lamp-based alternative to currently used continuous-wave systems for water disinfection. PUV polychromatic irradiation disinfection efficiency was compared to that from continuous-wave monochromatic low-pressure (LP) and polychromatic medium-pressure (MP) UV systems, using two types of actinometry (ferrioxalate and iodide-iodate) and an absolute spectral emission method for fluence measurement. All three methods were in good agreement. Once accurate and reliable methods for fluence measurement were established, the inactivation of Escherichia coli and pathogen surrogates phage T4 and T7 were investigated under each technology. Inactivation was significantly faster using PUV irradiation compared to LP or MP UV lamps at equivalent fluence levels. A significant fraction of the enhanced PUV inactivation efficiency was due to wavelengths greater than 295 nm.  相似文献   

6.
Guo M  Huang J  Hu H  Liu W  Yang J 《Water research》2012,46(13):4031-4036
Occurrence and degree of photoreactivation after ultraviolet (UV) exposure have been widely studied. However, the characteristics of photoreactivated microorganisms were rarely investigated. Hence, in this study, Escherichia coli with plasmids of ampicillin (amp)-resistance or fluorescence was used as indicators to examine the UV inactivation efficiencies and variations of characteristics of E. coli after subsequent photoreactivation.The experimental results indicate that the amp-resistant bacteria and the fluorescent bacteria used in this study had similar trends of UV dose-response curves. 3.5-log10 and 3-log10 reductions were achieved with a UV dose of 5 mJ/cm2 for the amp-resistant and fluorescent E. coli, respectively. There was no significant difference in the UV inactivation behavior, as compared with common strains of E. coli.For the amp-resistant E. coli and the fluorescent E. coli, after exposures with UV doses of 5, 15, 25, 40 and 80 mJ/cm2, the corresponding percent photoreactivations after a 4 h exposure to photoreactivating light were 1% and 46% respectively for a UV dose of 5 mJ/cm2, and essentially negligible for all other UV doses. Furthermore, the photoreactivated amp-resistant bacteria still have the ability of amp-resistance. And the revived fluorescent E. coli showed similar fluorescent behavior, compared with the untreated bacteria. The experimental results imply that after UV inactivation and subsequent photoreactivation, the bacteria retained the initial characteristics coded in the plasmid. This reveals a possibility that some characteristics of bacteria can retain or recover through photoreactivation, and a safety concern about pathogenicity revival might need to be considered with UV disinfection and photoreactivation.  相似文献   

7.
Hwang MG  Katayama H  Ohgaki S 《Water research》2007,41(18):4097-4104
In this study, silver cations dissolved as silver nitrate at various concentrations were exposed to Legionella pneumophila, Pseudomonas aeruginosa, and Escherichia coli to quantitatively estimate the bactericidal ability of silver. Observed data were analyzed using a newly developed model (Cs x T) that introduced a specific amount of chemisorbed silver onto a bacterial cell (Cs), which represented the chemisorption properties of silver on the bacterial cell body. Silver cations were rapidly chemisorbed onto bacterial cells after injection into samples, and Cs values (initial concentration of silver was 0.1 mg Ag/l) were calculated as 1.810 x 10(-6) (L. pneumophila), 1.102 x 10(-6) (P. aeruginosa), and 1.638 x 10(-6) microg Ag/cell(i) (E. coli) after incubation for 8 h. During that time, the three tested bacteria were completely inactivated under the detection limit (>7.2 log reduction). Based on the calculated Cs values, bacterial tolerance against silver was estimated by using the equation (Cs x T) multiplying the Cs values with exposure time (T). The Cs x T values well represented the bactericidal abilities of silver against the tested bacteria. The demanded Cs x T values to accomplish a 1 log inactivation (90% reduction) of L. pneumophila, P. aeruginosa, and E. coli (the initial numbers of bacteria were 1.5 x 10(7) CFU/ml, approximately) were estimated as 2.44 x 10(-6), 0.63 x 10(-6), and 0.46 x 10(-6) microgh/cell(i) of silver. The values were significantly reduced to 1.54 x 10(-6), 0.31 x 10(-6), and 0.25 x 10(-6) microgh/cell(i), respectively, with simultaneous injection of silver and copper. This study shows the successful quantitative estimation of the bactericidal ability of silver by applying the newly developed model (Cs x T). Among the tested bacteria, L. pneumophila showed the strongest tolerance to exposure of the same concentration of silver.  相似文献   

8.
Inactivation of Escherichia coli is examined using ultra-violet (UV) radiation from a pulsed xenon flashlamp. The light from the discharge has a broadband emission spectrum extending from the UV to the infrared region with a rich UV content. The flashlamp provides high-energy UV output using a small number of short-duration pulses (30 micros). The flashlamp is used with a monochromator to investigate the wavelength sensitivity of E. coli to inactivation by the pulsed UV light. Using 8 nm wide pulses of UV radiation, the most efficient inactivation is found to occur at around 270 nm and no inactivation is observed above 300 nm. A pyroelectric detector allows the energy dose to be determined at each wavelength, and a peak value for E. coli population reduction of 0.43 log per mJ/cm(2) is measured at 270 nm. The results are compared with the published data available for continuous UV light sources.  相似文献   

9.
u.v. dose/survival response curves were developed for E. coli, S. faecalis, poliovirus and reovirus. The influence of photoreactivation on the bacterial curves was examined. A maximum photoreactivation of 3.4 and 2.4 log of u.v. inactivated E. coli and S. faecalis populations, respectively, was observed. When allowing for photoreactivation, the dose required for 99.9% inactivation of the bacteria was approximately twice that required when photoreactivation was not considered. Reovirus, a double-standard RNA virus, was found to be significantly more resistant to u.v. radiation than poliovirus, a single-stranded RNA virus. The viruses in general, were found to be more resistant to u.v. radiation than the bacteria.  相似文献   

10.
Nematodes, which occur abundantly in granular media filters of drinking water treatment plants and in distribution systems, can ingest and transport pathogenic bacteria and provide them protection against chemical disinfectants. However, protection against UV disinfection had not been investigated to date.In this study, Caenorhabditis elegans nematodes (wild-type strain N2) were allowed to feed on Escherichia coli OP50 and Bacillus subtilis spores before being exposed to 5 and 40 mJ/cm2 UV fluences, using a collimated beam apparatus (LP, 254 nm). Sonication (15 W, 60 s) was used to extract bacteria from nematode guts following UV exposure in order to assess the amount of ingested bacteria that resisted the UV treatment using a standard culture method. Bacteria located inside the gut of C. elegans were shown to benefit from a significant protection against UV. Approximately 15% of the applied UV fluence of 40 mJ/cm2 (as typically used in WTP) was found to reach the bacteria located inside nematode guts based on the inactivation of recovered bacteria (2.7 log reduction of E. coli bacteria and 0.7 log reduction of B. subtilis spores at 40 mJ/cm2). To our knowledge, this study is the first demonstration of the protection effect of bacterial internalization by higher organisms against UV treatment, using the specific case of E. coli and B. subtilis spores ingested by C. elegans.  相似文献   

11.
Gao W  Smith DW  Li Y 《Water research》2006,40(12):2321-2326
Inactivation capacity of E. coli (strain ATCC 15597) in water by natural freezing was examined via two freezing methods: spray freezing and freezing in a freezer. The effect of freezing temperature (-5, -15 and -35 degrees C), storage time, freeze-thaw cycles on the survival of the test organism were investigated. In addition, the number of cells injured by the freezing process was also examined by using different growth media. The bacteria frozen at the warmer temperature (-5 degrees C) was most sensitive to storage and freeze-thaw cycles as compared to those frozen at -15 and -35 degrees C. In general, greater inactivation efficiencies were achieved under longer storage time and warmer freezing temperature conditions. Freezing and thawing caused cell injury. More cells were injured when frozen at -15 degrees C. The percentage of cells injured decreased as freeze-thaw cycles increased. The spray-freezing process was found more effective in killing the cells. On average, the log reduction rate for the spray ice with two-day storage time was about 4 log units higher than those without any storage after freezing. The results indicated that the natural freezing processes are not only cost-effective techniques for chemical and physical contaminant removal from wastewater or enhancing sludge dewaterability in cold regions but also effective in reducing E. coli concentration.  相似文献   

12.
Two Advanced Oxidation Processes, namely vacuum-ultraviolet (VUV) photolysis at 172 nm and ultraviolet/hydrogen peroxide (UV/H2O2) were investigated for the degradation of anatoxin-a in aqueous solutions. Solutions of anatoxin-a-fumarate were treated with VUV light at 172 nm with a UV dose of 200 mJ/cm2, where fumaric acid served as a reference compound for a competition kinetics analysis. The second-order rate constant for the reaction between anatoxin-a and the hydroxyl radical was found to be (5.2 ± 0.3) × 109 M−1 s−1 and was independent of pH, temperature, and initial concentration of anatoxin-a. The direct photolysis of anatoxin-a using a medium pressure (MP) UV lamp was also investigated, in which case a UV dose of 1285 mJ/cm2 was required to degrade anatoxin-a by 88% and 50% at concentrations of 0.6 mg/L and 1.8 mg/L of toxin, respectively. Treatment of anatoxin-a with a low pressure (LP) UV lamp in the presence of 30 mg/L of H2O2 was examined, where it was found that more than 70% of toxin could be degraded at a UV dose of 200 mJ/cm2. The degradation arises from the oxidation of the toxin by hydroxyl radicals. The addition of H2O2 clearly enhanced the degradation of anatoxin-a, up to a concentration of 40 mg/L, after which addition of more H2O2 had little effect on the degradation kinetics of anatoxin-a. The effect of background constituents in the water on the degradation of anatoxin-a was also investigated using natural and synthetically produced model waters.  相似文献   

13.
Advanced oxidation with ultraviolet light and hydrogen peroxide (UV/H2O2) produces hydroxyl radicals that have the potential to degrade a wide-range of organic micro-pollutants in water. Yet, when this technology is used to reduce target contaminants, natural organic matter can be altered. This study evaluated disinfection by-product (DBP) precursor formation for UV/H2O2 while reducing trace organic contaminants in natural water (>90% for target pharmaceuticals, pesticides and taste and odor producing compounds and 80% atrazine degradation). A year-long UV/H2O2 pilot study was conducted to evaluate DBP precursor formation with varying water quality. The UV pilot reactors were operated to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for DBP precursor formation. Two process waters of differing quality were used as pilot influent, i.e., before and after granular activated carbon adsorption. DBP precursors increased under most of the conditions studied. Regulated trihalomethane formation potential increased through the UV/H2O2 reactors from 20 to 118%, depending on temperature and water quality. When Post-GAC water served as reactor influent, less DBPs were produced in comparison to conventionally treated water. Haloacetic acid (HAA5) increased when conventionally treated water served as UV/H2O2 pilot influent, but only increased slightly (MP lamp) when GAC treated water served as pilot influent. No difference in 3-day simulated distribution system DBP concentration was observed between LP and MP UV reactors when 80% atrazine degradation was targeted.  相似文献   

14.
MBR出水的紫外线消毒试验研究   总被引:1,自引:0,他引:1  
考察了紫外线(UV)对MBR出水中微生物的灭活情况,以及光活化和暗修复对细菌灭活效果的影响。结果表明:UV对MBR出水中的微生物具有良好的灭活效果,当UV剂量为16mJ/cm^2时,对细菌的对数灭活率为3-lg;在相同的UV剂量下,不同UV强度对细菌的灭活效果无显著影响;经UV消毒后的细菌在3h内未出现明显的暗修复现象,但在日光灯和太阳光辐射下可发生明显的光活化现象,且不同光源下的光活化速率和达到饱和的时间有所不同。  相似文献   

15.
以大肠杆菌为研究对象,考察了紫外线消毒对大肠杆菌的灭活效果及紫外线消毒后大肠杆菌在可见光下发生光复活的情况,同时考察了紫外线消毒和光复活过程中大肠杆菌电子传递体系(ETS)活性的变化。结果表明,大肠杆菌的灭活率随着紫外线剂量的增加而提高,在相同剂量下高强度的紫外线对大肠杆菌的灭活效果好于低强度的紫外线。经紫外线灭活后的大肠杆菌在可见光下会发生光复活,紫外线剂量对大肠杆菌的光复活有一定影响,高剂量下大肠杆菌发生光复活的能力比低剂量下的差;相同剂量下,较高强度的紫外线有利于控制大肠杆菌的光复活。对大肠杆菌ETS活性的研究表明,随着紫外线强度和剂量的增加,大肠杆菌的活性不断降低;紫外线消毒后的大肠杆菌经可见光照射后发生光复活时,其活性有所增加,在较高的紫外线剂量和强度下大肠杆菌的活性增加较少,而在较低剂量和强度下大肠杆菌的活性恢复能力较强。  相似文献   

16.
Cho M  Lee Y  Choi W  Chung H  Yoon J 《Water research》2006,40(19):3580-3586
Ferrate (Fe(VI)) has high potentials as a multi-purpose water treatment chemical acting as an oxidant, coagulant, and disinfectant, but little detail has been reported concerning its biocidal ability. In this study, the inactivation efficiencies of three Fe(VI) species (H(x)FeO(4)(x-2), x=0, 1, 2) are quantified using Escherichia coli as a model microorganism. E. coli inactivation by Fe(VI) was performed in solutions buffered with 25 mM phosphate in the pH range of 5.6-8.2 and at 25 degrees C. Kinetics of E. coli inactivation were successfully fitted to the Modified Delayed Chick-Watson model in the tested pH range, indicating that log inactivation level of E. coli is linearly proportional to exposure amount of E. coli to Fe(VI). The rate constant of E. coli inactivation by Fe(VI) (k(obs)) that was obtained from the linear regression increased non-linearly from 0.33 to 6.25 l(mg min)(-1) with decreasing pH from 8.2 to 5.6. From the measured pH dependency of k(obs) and the known acidity constants of Fe(VI) species (pK(a), H(2)FeO(4)=3.50 and pK(a), HFeO(4)(-)=7.23), HFeO(4)(-) and H(2)FeO(4) were found to be 3 and 265 times as effective as FeO(4)(2-) in E. coli inactivation, respectively.  相似文献   

17.
18.
Conventionally treated sewage sludge may contain high concentrations of potentially pathogenic microorganisms and additional treatment is required to minimise the risks to health if it is to be recycled to agricultural land. Mesophilic anaerobic digestion (MAD) is the most widely used process in the UK for stabilising sludge prior to agricultural recycling, but little is known about the fate of a number of enteric pathogens as the sludge passes through the treatment processes. The aim of this study was to determine the efficiency of MAD in removing the bacterial enteric pathogens, Salmonella senftenberg, Listeria monocytogenes and Campylobacter jejuni which were added as a spike to the digester feedstock, together with the die-off of indigenous Escherichia coli already present in the sludge. The primary sludge digestion stage of MAD was found to achieve a log removal of 1.66 for E. coli, 2.23 for L. monocytogenes and 2.23 for S. senftenberg. However, the extent of die-off was a function of the numbers of pathogens in the feed and as these increased the log removal also increased. The numbers of C. jejuni were not affected by primary sludge digestion. Additional die-off was provided by secondary sludge digestion with log removals of 1.70 for E. coli, 2.10 for S. senftenberg and 0.36 for C. jejuni.  相似文献   

19.
Cho M  Chung H  Choi W  Yoon J 《Water research》2004,38(4):1069-1077
The biocidal action of the TiO2 photocatalyst has been now well recognized from massive experimental evidences, which demonstrates that the photocatalytic disinfection process could be technically feasible. However, the understanding on the photochemical mechanism of the biocidal action largely remains unclear. In particular, the identity of main acting photooxidants and their roles in the mechanism of killing microorganisms is under active investigation. It is generally accepted that reactive oxygen species (ROS) and OH radicals play the role. The aim of this study is to determine how the OH radical, acting either independently or in collaboration with other ROS, is quantitatively related to the inactivation of E. coli. The steady-state concentrations of OH radicals ([*OH]ss) in UV-illuminated TiO2 suspensions could be quantified from the measured photocatalytic degradation rates of p-chlorobenzoic acid (a probe compound) and its literature bimolecular rate constant with OH radicals. The results demonstrated an excellent linear correlation between [*OH]ss and the rates of E. coli inactivation, which indicates that the OH radical is the primary oxidant species responsible for inactivating E. coli in the UV/TiO2 process. The CT value of OH radical for achieving 2 log E. coli inactivation was initially found to be 0.8x10(-5) mg min/l, as predicted by the delayed Chick-Watson model. Although the primary role of OH radicals in photocatalytic disinfection processes has been frequently assumed, this is the first quantitative demonstration that the concentration of OH radicals and the biocidal activity is linearly correlated.  相似文献   

20.
污水厂出水经紫外线(UV)消毒后在排放过程中会出现微生物的复活现象,为此考察了采用UV-氯和UV-过氧乙酸(PAA)控制光复活的效果。经研究发现:在UV照射剂量为5.4mJ/cm^2、投氯量为2.5mg/L、反应时间为10min和UV照射剂量为5.4mJ/cm^2、过氧乙酸投量为10mg/L、反应时间为10min的条件下,对大肠菌群的灭活率均可达4个对数级以上,并能控制光复活现象。从消毒稳定性、经济适用性、安全毒副性等方面考虑,可采用UV—PAA作为污水厂出水消毒及抑制光复活的技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号