首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kazanskii  A. G.  Forsh  P. A.  Khabarova  K. Yu.  Chukichev  M. V. 《Semiconductors》2003,37(9):1076-1079
Semiconductors - The effect of irradiation with 40 keV electrons on the spectral dependence of the absorption coefficient and on the conductivity and photoconductivity of μc-Si:H was studied....  相似文献   

2.
The effect of the femtosecond laser treatment of hydrogenated amorphous silicon (a-Si:H) films on their structural, optical, and photoelectric properties is studied. Under the experimental conditions applied in the study, laser treatment of the film with different radiation intensities induces structural changes that are nonuniform over the film surface. An increase in the radiation intensity yields an increase in the contribution of the nanocrystalline phase to the structure, averaged over the sample surface, as well as an increase in the conductance and photoconductance of the samples. At the same time, for all of the samples, the absorption spectrum obtained by the constant-photocurrent method has a shape typical for those of amorphous silicon. Obtained results indicate the possibility of a-Si:H films photoconductance increase by femtosecond pulse laser treatment.  相似文献   

3.
Nanostructured Si films differing in hydrogen content, in the forms of Si-H bonds, and in certain characteristics of Si inclusions in an amorphous matrix (volume fraction, size, and structure) were studied. The behavior common to all the studied films, i.e., an increase in the defect density and nonmonotonic enhancement of photoconductivity at the “red wing” of the spectral characteristic compared to a-Si:H, was assessed. At the same time, there are films with either enhanced or reduced photoconductivity compared to a-Si:H.  相似文献   

4.
The effect of boron dopant of microcrystalline hydrogenated silicon films on the temperature dependence of photoconductivity and photoresponse time was studied. The measurements were carried out in the temperature range of 130–450 K under irradiation with 1.4-eV photons. It is established that the steady-state photoconductivity and photoresponse time increase with doping level. A model of nonequilibrium charge carrier recombination, which takes into account the mixed-phase structure of microcrystalline silicon, is suggested. The model satisfactory explains the results obtained.  相似文献   

5.
Temperature dependences of photoconductivity of layered and conventional undoped films of amorphous hydrogenated silicon have been studied within a wide range of temperatures (130–420 K) and illumination intensities (0.1–60 mW cm−2). It is established that a higher photosensitivity of layered films compared with conventional films is governed by a low dark conductivity of layered films as a consequence of a deeper position of the equilibrium Fermi level in the band gap and the absence of temperature quenching of photoconductivity in these films. It is shown that these specific features of electrical and photoelectric properties of layered films can be attributed to a low concentration of silicon dangling bonds in comparison with the concentration of oxygen-related acceptor centers, which feature a larger capture coefficient for holes.  相似文献   

6.
Thin films of titanyl phthalocyanine (TiOPc) have been deposited on both fused quartz and glass substrates by the thermal evaporation technique. The structural and optical properties of the as-deposited and annealed films have been reported. The structural features of the as-deposited and annealed films have been studied by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and Fourier-transform infrared (FT-IR) technique. The optical constants (refractive index, n, and absorption index, k) of the films have been presented for the first time in the wavelength range 200–2500 nm by using spectrophotometric measurements at nearly normal incidence. The band gaps of the as-deposited film at 1.48 eV and 2.5 eV corresponding to Q-band and B or Soret band were red-shifted to 1.15 eV and 2.19 eV, respectively, when the film annealed at 433 K.  相似文献   

7.
通过射频等离子体增强化学气相沉积(RF-PECVD)技术与退火处理制备多晶硅薄膜,研究了衬底和退火温度对所制薄膜的结构及光学性质的影响。本次试验最大的晶粒尺寸是在衬底温度为250℃获得,考虑薄膜表面的质量,最佳的退火温度为635℃,衬底温度为225℃,在玻璃衬底形成的晶粒大于50 nm,光学带隙为1.5 e V。结果表明:衬底温度影响着薄膜中氢含量以及相关的缺陷。随着退火温度的升高,晶化率的提高,光学带隙先减小后增大。  相似文献   

8.
用脉冲激光沉积(PLD)方法在Si(111)和蓝宝石衬底上制备的氧化锌薄膜,在不同的退火温度和不同的退火氛围中进行了退火处理.退火温度及退火氛围对ZnO薄膜的结构和发光特性的影响用X射线衍射(XRD)谱和光致发光谱进行了表征.实验结果表明,随着退火温度的提高,ZnO薄膜的压应力减小,并向张应力转化.在不同的退火温度退火...  相似文献   

9.
The electrical and photoelectric properties of layered a-Si:H films obtained by cyclic plasmochemical deposition and the effect of thermal annealing on these properties have been studied. Unannealed films demonstrate high photosensitivity, with a photoconductivity to dark conductivity ratio of K=3.4×106. Increasing the annealing temperature causes the film photosensitivity to fall because of a considerable decrease in the photoconductivity and increase in the dark conductivity. For films annealed at temperatures above 500°C, the conductivity is the sum of the band conductivity and the hopping conductivity via states at the Fermi level.  相似文献   

10.
The spectral characteristics of the refractive index and the extinction coefficient in the range 0.6–2.0 eV for amorphous silicon films prepared by electron-beam evaporation with variation of the substrate temperature, deposition rate, and annealing temperature in air are presented. The results obtained are discussed on the basis of the changes in the Penn gap energy as a function of the indicated preparation and treatment conditions. Fiz. Tekh. Poluprovodn. 32, 879–881 (July 1998)  相似文献   

11.
Microcrystalline silicon films were deposited at a high rate and low temperature using jet-type inductively coupled plasma chemical vapor deposition(jet-ICPCVD).An investigation into the deposition rate and microstructure properties of the deposited films showed that a high deposition rate of over 20 nm/s can be achieved while maintaining reasonable material quality.The deposition rate can be controlled by regulating the generation rate and transport of film growth precursors.The film with high crystalli...  相似文献   

12.
Pulsed laser annealing of hydrogenated amorphous silicon, glow-discharge-deposited on single crystal silicon, shows partial crystallization without significant loss of hydrogen. After laser annealing up to 60 MW/cm2, the photoluminescence spectrum exhibits only a very slight shift to lower energy. This contrasts with thermally induced dehydrogenation which causes a large spectral shift. Also thermally induced crystallization occurs above 700?C where dehydrogenation is complete.  相似文献   

13.
The influence of thermal annealing on the photoluminescence, electroluminescence, and the transmission and reflection spectra in nanocrystalline zinc sulfide films has been studied. All the samples exhibit a broad emission band, the intensity of which depends on the annealing temperature. It is shown that luminophors, the crystal lattice of which includes imperfections that appeared in the transition from wurtzite to sphalerite, feature the highest emission intensity.  相似文献   

14.
Transparent conducting indium tin oxide (ITO) thin films with the thickness of 300 nm were deposited on quartz substrates via electron beam evaporation, and five of them post-annealed in air atmosphere for 10 min at five selected temperature points from 200 °C to 600 °C, respectively. An UV–vis spectrophotometer and Hall measurement system were adopted to characterize the ITO thin films. Influence of thermal annealing in air atmosphere on electrical and optical properties was investigated in detail. The sheet resistance reached the minimum of 6.67 Ω/sq after annealed at 300 °C. It increased dramatically at even higher annealing temperature. The mean transmittance over the range from 400 nm to 800 nm reached the maximum of 89.03% after annealed at 400 °C, and the figure of merit reached the maximum of 17.79 (Unit: 10−3 Ω−1) under the same annealing condition. With the annealing temperature increased from 400 °C to 600 °C, the variations of transmittance were negligible, but the figure of merit decreased significantly due to the deterioration of electrical conductivity. With increasing the annealing temperature, the absorption edge shifted towards longer wavelength. It could be explained on the basis of Burstein–Moss shift. The values of optical band gap varied in the range of 3.866–4.392 eV.  相似文献   

15.
利用溶胶凝胶法在石英衬底上采用旋涂法制备出ZnO薄膜,通过X射线衍射仪发现不同的退火温度对ZnO薄膜的择优取向有很大影响;通过紫外可见分光光度计和室温发光谱可以看出,制备的薄膜有很好的光学透过性和很强的紫外发光特性,而不同的退火温度对其光学性质有很大的影响。实验发现采用此种方法在650℃左右退火是一个合适的退火温度,结构特性和光学性质都相对较好;采用热分析方法可知ZnO将在375℃左右从非晶转向结晶状态,因而在常规ZnO薄膜制备方法中增加一步500oC的热处理将有助于提高ZnO薄膜的结晶质量。  相似文献   

16.
Microcrystalline silicon films were deposited at a high rate and low temperature using jet-type inductively coupled plasma chemical vapor deposition(jet-ICPCVD).An investigation into the deposition rate and microstructure properties of the deposited films showed that a high deposition rate of over 20 nm/s can be achieved while maintaining reasonable material quality.The deposition rate can be controlled by regulating the generation rate and transport of film growth precursors.The film with high crystallinity deposited at low temperature could principally result from hydrogen-induced chemical annealing.  相似文献   

17.
The effects of annealing of B or N dual implanted regions in 15-20 Μm thick monocrystalline Β-SiC films has been investigated using cross-sectional TEM, SIMS, Raman spectroscopy, C-V and sheet resistance measurements. Implantation resulted in buried amorphous regions (in the B films) or highly disordered regions (in the N films) and residually strained regions. Annealing for 300 s at selected temperatures between 1173 and 2073 K caused structural reordering, precipitation (in the B samples) and dopant diffusion, as the temperature was progressively increased. Only slight changes were noted in the sheet resistance of either type of sample as a result of annealing to 1973 K. However, the values of this parameter decreased markedly atT > 1973 K in both implanted and as-grown samples. Thus, this phenomenon was most probably caused by the formation of additionaln-type defects in the bulk of the materials. Presented at the 1985 Electronic Materials Conference, Boulder, CO, June, 1985.  相似文献   

18.
Lead sulfide (PbS) thin films with 150 nm thickness were prepared onto ultra-clean quartz substrate by the RF-sputtering deposition method. Deposited thin films of PbS were annealed at different temperatures 100 °C, 150 °C, 200 °C, 250 °C and 300 °C. X-ray diffraction pattern of thin films revealed that thin films crystallized at 150 °C. Crystalline thin films had cubic phase and rock salt structure. The average crystallite size of crystalline thin films was 22 nm, 28 nm and 29 nm for 150 °C, 200 °C and 250 °C respectively. From 150 °C to 250 °C increase in annealing temperature leads to increase in crystallite arrangement. FESEM images of thin films revealed that crystallite arrangement improved by increasing annealing temperature up to 250 °C. Increase in DC electrical conductivity by increasing temperature confirmed the semiconductor nature of crystalline thin films. Increase in dark current by increasing annealing temperature showed the effect of crystallite arrangement on carrier transport. Photosensitivity decreased by increasing annealing temperature for crystalline thin films that it was explained at the base of thermal quenching of photoconductivity and adsorption of oxygen at the surface of thin films that leads to the formation of PbO at higher temperatures.  相似文献   

19.
The photoconductivity of nanostructured hydrogenated silicon films prepared by different techniques was studied in relation to the Fermi level position, the density of defects, and the type of Si-H bonding. The influence of Si+ ion implantation on the photoconductivity and other parameters of a-Si:H films was determined.  相似文献   

20.
Electrical, photoelectric, and optical properties of hydrogenated amorphous silicon films with various ratios between the nanocrystalline and amorphous phases in the structure of the material have been studied. On passing from an amorphous to a nanocrystalline structure, the room-temperature conductivity of the films increases by more than five orders of magnitude. With increasing fraction of the nanocrystalline component in the film structure, the steady-state photoconductivity varies nonmonotonically and is determined by the variation in the carrier mobility and lifetime. Introduction of a small fraction of nanocrystals into the amorphous matrix leads to a decrease in the absorption in the defect-related part of the spectrum and, accordingly, to a lower concentration of dangling bonds, which are the main recombination centers in amorphous hydrogenated silicon. At the same time, the photoconductivity in these films becomes lower, which may be due to appearance of new centers that are related to nanocrystals and reduce the lifetime of nonequilibrium carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号