首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
低粘度高耐热环氧树脂组成物研究   总被引:2,自引:0,他引:2  
在改性酸酐固化的环氧树脂体系中,加入非环氧类低粘度活性交联剂,得到了室温下粘度仅为80mPa·s的酸酐 环氧树脂体系。利用正交试验优选了树脂配方,该树脂体系在有效降低粘度的同时,还提高了耐热性,优选配方树脂体系的热变形温度达到265℃。该树脂体系适用于RTM(ResinTransferMolding)成型工艺制备高性能复合材料及电器设备的灌封。  相似文献   

2.
环氧树脂/酸酐固化体系的固化动力学及耐热性研究   总被引:6,自引:0,他引:6  
通过不同升温速率下的DSC研究了环氧树脂/酸酐固化体系的固化动力学.利用DSC、DMA和TGA研究了固化体系的耐热性能.通过分析确定了体系的固化工艺,采用Kissinger、Ozawa法计算出固化体系的表观活化能.其均值为62.00 kJ/mol,结合Crane公式求出反应级数为0.92.采用DSC法测得玻璃化转变温度Tg=183℃.采用DMA法测得玻璃化转变温度Tg=182℃.热失重曲线表明,固化体系的起始分解温度为350℃.  相似文献   

3.
环氧树脂聚酰胺体系微波固化特性研究   总被引:1,自引:0,他引:1  
微波固化相对于传统热固化有着固化效率高、无污染、设备投资小等优势。针对双酚A型环氧树脂聚酰胺固化体系,采用DSC测固化度表征微波固化行为,优化体系成份配比,设计正交试验表考察微波固化工艺参数对固化行为的影响,并对两种不同固化方式产物的玻璃化转变温度进行比较。结果表明:微波固化体系最优配比为环氧E51∶650聚酰胺∶660A活性稀释剂=100∶80∶12;影响该体系固化效率的微波固化工艺参数主次顺序依次为加热时间、输出功率、加热周期、间歇时间;该体系微波固化产物的玻璃化转变温度及弯曲性能较热固化产物有一定程度的降低,分析得出微波场的不均匀性是这一现象产生的重要影响因素。  相似文献   

4.
环氧树脂阻燃剂研究   总被引:2,自引:0,他引:2  
研究了煤矿安全用复合式氧气瓶缠绕胶接体系中阻燃剂的筛选及阻燃机理。通过实验确定了最佳阻燃剂为四溴双酚A(TBA)与三氧化二锑(Sb2O3),其混合比m(TBA):m(Sb2O3)=3:2。加入质量分数为lO%的阻燃剂于环氧树脂中,所做胶条燃烧试验自熄时间1s。胶接体系其它综合指标均符合要求,满足了煤矿安全的需求。  相似文献   

5.
以线形双酚A酚醛(BPAN)代替双氰胺(DICY)作溴化环氧(BE)的固化剂,通过凝胶曲线、差示热分析 (DTA)及差示扫描量热法(DSC)对BE/BPAN和BE/DICY两个体系的对比分析表明,以2-甲基咪唑为促进剂,BE/‘ BPAN体系固化温度约为125℃,DTA曲线的峰始温度(Ti)至峰终温度(Tp)近60℃。在相同的固化工艺条件下, DSC测试的BE/BPAN固化物的玻璃化转变温度(Tg)比BE/DICY固化物的Tg提高近12℃,室温水中浸泡24 h, BE/BPAN制备的复合型覆铜板吸水率为0.07%。  相似文献   

6.
用溶剂萃取法提纯低分子量四溴双酚A型环氧树脂时,有机溶剂萃取产品所得萃取液水洗易发生乳化现象。本文探索了避免乳化发生的条件,获得了高质量树脂产品,减少了产品因水洗造成的损失。  相似文献   

7.
溴化环氧树脂阻燃剂的热性能及其应用   总被引:8,自引:1,他引:8  
考察了三种溴化环氧树脂阻燃剂 (自制 ,相对分子质量分别为 2 .5× 10 4、4.3× 10 4和 6.1× 10 4)的热性能。其热分解温度均在 3 10℃以上 ,热分解温度随着相对分子质量的增加略有下降。同时也研究了三者阻燃ABS树脂的阻燃性能及物理力学性能。其阻燃性能与十溴二苯醚相当 (UL94V 0级 ) ,对ABS树脂的冲击强度影响较大 (十溴二苯醚也有同样的影响 ) ,但ABS的其他物理力学性能受影响较小。高相对分子质量溴化环氧树脂阻燃剂可以作为十溴二苯醚较理想的替代品。  相似文献   

8.
分别考察和对比了四溴双酚A/焦锑酸钠、四溴双酚A/焦锑酸钠/磷酸三苯酯(TPP)阻燃体系、溴代聚碳酸酯齐聚物阻燃剂和磺酸盐类阻燃剂对透明聚碳酸酯(PC)的光学性能和力学性能的影响。结果表明,选用四溴双酚A/焦锑酸钠(用量5.0/2.0份)阻燃体系,阻燃透明聚碳酸酯(PC)的性价比高,阻燃级达到UL94V-0级,极限氧指数32%,缺口冲击强度26.5kJ/m2,拉伸强度50.2MPa,透光率80%以上。  相似文献   

9.
低粘度中温固化环氧树脂体系的基本性能   总被引:5,自引:2,他引:3  
为满足环氧树脂在RTM、浇注、灌注等工艺中对低粘度的要求,通过对普通双酚A型环氧树脂进行改性,制备出一种低粘度的环氧树脂体系,并对其粘度、力学性能、耐热性能等进行了表征。结果表明,该体系在常温具有较长的适用期,中温固化后力学性能、耐热性能良好。  相似文献   

10.
用傅里叶变换红外光谱法研究了芳香二胺在恒温下固化四溴双酚A环氧树脂的固化反应动力学,得出了各固化反应的表观活化能。  相似文献   

11.
含磷单体是新一代无卤、环保型阻燃环氧树脂(EP)的改性单体,可以合成具有优异热稳定性和阻燃性能的新型含磷EP。详细阐述了通过合成含磷EP单体和含磷固化剂来合成新型含磷EP的合成方法及性能等,最后指明了它的发展方向。  相似文献   

12.
A kind of intumescent ?ame-retardant curing agent (PCDSPB) was synthesised by using pentaerythritol, phosphorus oxycholoride, cyclohexane-1,3-diyldimethanamine (1,3- BAC) as raw materials and the structure was characterised by FTIR and MS. The composite materials were investigated by using TG, TG-FTIR, LOI, UL-94, SEM, and CCT. The results show that the ?lling of PCDSPB can improve the ?ame resistance of EP composites. When the phosphorus content of the composite system was 1.74 wt-%, the initial weight loss temperature was 299°C and the char yield was 26.3% at 600°C. Tensile strength was 35.4 MPa, impact strength was4.3 kJ m?2, LOI was 27.9, and the UL94 passed V-0 level. In the CCT, the peak heat release rate reduced to 276.0 kW m?2(EP-2) from 622.8 kW m?2 (EP-0), the total heat release decreased from 121.8 MJ m?2 (EP-0) to 89.5 MJ m?2 (EP-2). Therefore, the PCDSPB is a good intumescent ?ame-retardant curing agent for EP.  相似文献   

13.
采用示差扫描量热法(DSC)对缩水甘油醚类环氧树脂(E-51)与脂环族环氧树脂(R-122)共同改性的双酚A型氰酸酯(BADCy)树脂的固化反应历程进行了研究。由Kisserger方程求得共聚体系固化反应的表观活化能为60.5 kJ/mol,根据Crane理论求得固化反应级数为0.89,接近于1级反应。该体系起始固化温度为132.1℃,峰顶固化温度为168.7℃,终止固化温度为246.0℃。研究表明,环氧树脂可促进BADCy的固化,改性体系可在177℃以下实现较完全固化。  相似文献   

14.
综述了近几年来中温固化环氧树脂(EP)体系的最新研究进展,详细介绍了双氰胺、酸酐和咪唑等常用固化剂及其促进剂的固化机制,最后对EP中温固化体系未来的研究方向进行了展望。  相似文献   

15.
马尚文 《广州化工》2012,40(24):114-115
四溴双酚A以95%无水乙醇为溶剂,以双酚A和溴素为原料合成。在双酚A与溴素摩尔比一定的条件下,通过改变反应时间进行合成实验,结果表明:最佳反应时间2.5 h;在反应时间一定的条件下,通过改变双酚A与溴素摩尔比进行合成实验,结果表明:最佳原料摩尔比1∶2.6。在此反应条件下合成具有高收率,高质量,操作简便等优点。  相似文献   

16.
环氧树脂固化物具有一系列性能优势,是重要的电子材料之一,但因其极易燃烧而存在火灾隐患。采用一类扭曲非对称结构的二氮杂萘酮型二胺和二酚型无卤阻燃固化剂,与双酚A型环氧树脂(E51)和含磷环氧树脂固化,所得固化物具有优异的热学和动态力学性能,T可达157℃,热线胀系数低;与含磷树脂固化后所得g材料的阻燃性顺利通过UL94 V-0级测试。  相似文献   

17.
高温快速固化高相对分子质量韧性环氧树脂研究   总被引:1,自引:1,他引:1  
采用己二酸和对苯二酚对液态低Mn(相对分子质量)的EP(环氧树脂)进行扩链改性,合成了含柔性链段的高Mn固体EP。采用差示扫描量热(DSC)法对韧性EP/酚类固化剂体系的反应活性和固化反应动力学进行了研究。结果表明:韧性EP的环氧值(0.165)和软化点(77℃)均高于市售EP,其反应活性较高(140℃时凝胶时间仅为79 s,200℃时凝胶时间已缩短至16 s),并且韧性EP因软化点较高而不会结块,故其完全满足防腐粉末涂料高温快速固化的使用要求。采用Kissinger法、Ozawa法和Crane法等计算出该固化体系的反应活化能为73.10 kJ/mol,反应级数为0.932。  相似文献   

18.
应用差示扫描量热分析(DSC)对不同比例的酚醛型环氧树脂/双酚A型氰酸酯树脂体系固化动力学进行了研究,并通过Kissinger法、Ozawa法和Crane法求得了体系的固化动力学参数。结果表明,当环氧树脂与氰酸酯的摩尔比为2∶1时,由Kissinger法和Ozawa法计算得到的表观活化能在体系中最小,分别为49.05 kJ/mol和54.86 kJ/mol,Crane方程求得的表观反应级数为1~2。  相似文献   

19.
环氧树脂改性水性聚氨酯阻燃涂料的研究   总被引:3,自引:0,他引:3  
以E-44环氧树脂改性水性聚氨酯为基料,三聚氰胺、季戊四醇为阻燃剂,制备了一种阻燃涂料.测试了该涂料的附着力、耐水性、吸水率、阻燃性及热失重.结果表明,改性后涂料的涂膜附着力达到1级,耐水时间为240 h,吸水率16.5%,阻燃时间可达10 min以上,耐高温及阻燃性能明显提高.  相似文献   

20.
Three kinds of inherent flame-retardant epoxy resin (EP) composites with 20 wt % benzoxazine (BOZ) were prepared with different curing processes with 2-methyl-1H-imidazole (MI) as a catalyst or/and changes in the curing temperature. The effects of the curing process on the flame retardancy, thermal stability, mechanical properties, and curing behaviors were investigated. The composite with added MI cured at low temperature (EBM–LT) had the best properties. It possessed a 35.3% limiting oxygen index and achieved a UL 94 V-0 rating. Thermogravimetric analysis indicated that EBM–LT had the best thermal stability among the three kinds of EP composites with BOZ. The EP composites with BOZ mainly displayed a condensed-phase flame-retardant mechanism. The mechanical properties improvement was attributed to the formation of a heterogeneous network. Differential scanning calorimetry indicated that MI reacted with EP and catalyzed the homopolymerization of BOZ, and EP reacted with BOZ. Fourier transform infrared spectroscopy analysis indicated that curing at lower temperature caused the formation of more homopolymers of BOZ. The relationship of the curing process, network structure, and properties of EP composites with BOZ was established; this could help with the design of high-performance EP composites with BOZ. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47847.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号