首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
In IGCC power plants, hot gas desulfurization (HGD) represents an attractive solution to simplify syngas treatments and to improve the efficiency, potentially reducing the final cost of electricity. In the present study, the various consequences of the introduction of a HGD station in the power plant are discussed and evaluated, in comparison with conventional near-ambient temperature clean-up. Attention is paid to the potential improvements of the overall energy balance of the complete power station, along with the requirements of the sorbent regeneration process, to the influence of the desulfurization temperature and to the different solutions needed to control the NOx emissions (altered by the presence of HGD).  相似文献   

2.
This paper presents detailed study of biogas reforming. Model biogas with different levels of H2S is subjected to reforming reaction over supported Ni catalyst in a fixed bed reactor at 700 °C and 800 °C. In order to understand the poisoning effects of H2S the reactions have been initially carried out without H2S in the feed stream. Three different H2S concentrations (20, 50 and 100 ppm) have been considered in the study. The H2O to CH4 ratio is maintained in such as way that CO2 also participates in the reforming reaction. After performing the poisoning studies, regeneration of the catalyst has been studied using three different techniques i) removal of H2S from the feed stream ii) temperature enhancement and iii) steam treatment. Poisoning at low temperature is not recoverable just by removal of H2S from the feed stream. However, poisoning at high temperature is easily reversed just by removal of H2S from the feed stream. Unlike some previous reports by Li et al. (2010) and Rostrup-nielsen (1971) [1,2], catalyst regeneration is achieved in shorter time frames for all the regeneration techniques attempted.  相似文献   

3.
A mixed ionic and electronic conducting (MIEC) membrane provides an alternative to the palladium alloy membrane for water gas shift membrane reactor. It exhibits much better sulfur resistance performance than the palladium alloy membrane. In this paper, the thermodynamic performance of the integrated gasification combined cycle (IGCC) system with MIEC membrane reactor is predicted for the first time. The effects of reactor operation parameters on system flowsheet and performance are investigated and illustrated by sensitive analysis. When the reactor operation temperature is 900 °C and the H2O decomposition ratio is 0.5, the system net efficiency is about 38.90%, which is 2.6% points higher than that of the IGCC with Selexol. The system net efficiency increases with the decrease of operation temperature. With the net efficiency of the conventional system as the reference, the minimum H2O decomposition ratios at different operating temperatures are provided.  相似文献   

4.
The Shell coal integrated gasification combined cycle (IGCC) based on the gas quench system is one of the most fuel flexible and energy efficient gasification processes because is dry feed and employs high temperature syngas coolers capable of rising high pressure steam. Indeed the efficiency of a Shell IGCC with the best available technologies is calculated to be 47–48%. However the system looses many percentage points of efficiency (up to 10) when introducing carbon capture. To overcome this penalty, two approaches have been proposed. In the first, the expensive syngas coolers are replaced by a “partial water quench” where the raw syngas stream is cooled and humidified via direct injection of hot water. This design is less costly, but also less efficient. The second approach retains syngas coolers but instead employs novel water–gas shift (WGS) configurations that requires substantially less steam to obtain the same degree of CO conversion to CO2, and thus increases the overall plant efficiency. We simulate and optimize these novel configurations, provide a detailed thermodynamic and economic analysis and investigate how these innovations alter the plant’s efficiency, cost and complexity.  相似文献   

5.
Solid sorbents can be used to capture CO2 from pre-combustion sources at various temperatures. MgO and CaO are typical medium- and high-temperature CO2 sorbents. However, pure MgO is not active toward CO2. The addition of Na2CO3 increases the operating temperature and significantly increases the reactivity of sorbents to capture CO2. Na2CO3-promoted MgO is a promising medium-temperature CO2 sorbent. In this study, the thermodynamic performance of integrated gasification combined cycle (IGCC) systems with Na2CO3–MgO-based warm gas decarbonation (WGDC) and CaO-based hot gas decarbonation (HGDC) is evaluated and compared with that of an IGCC system with methyldiethanolamine (MDEA)-based cold gas decarbonation (CGDC). Assuming that the average CO2 capture capacities of solid sorbents are one-third of their theoretical maxima, we reveal that the IGCC system undergoes approximately 2.8% and 3.6% improvement on net efficiency when switching from CGDC to WGDC and to HGDC, respectively. The net efficiency of the system is increased by improving the CO2 capture capacity of the sorbent. The IGCC with Na2CO3–MgO experiences more significant increase in efficiency than that with CaO along with the improvement of sorbent average CO2 capture capacity. The efficiency of the IGCC systems reaches the same value when the average CO2 capture capacities of both sorbents are 53% of their theoretical levels. The effects of gas turbine combustor fuel gas inlet temperature on IGCC system performance are analyzed. Results show that the efficiency of the IGCC systems with HGDC and WGDC increases by 0.74% and 0.53% respectively as the fuel gas inlet temperature increases from 250 °C to 650 °C.  相似文献   

6.
Glass fiber entrapped ZnO/SiO2 sorbent (GFES) was developed to remove sulfur species (mainly hydrogen sulfide, H2S) from reformates for logistic PEM fuel cell power systems. Due to the use of microfibrous media and nanosized ZnO grains on highly porous SiO2 support, GFES demonstrated excellent desulfurization performance and potential to miniaturize the desulfurization reactors. In the thin bed test, GFES (2.5 mm bed thickness) attained a breakthrough time of 540 min with up to 75% ZnO utilization at 1 ppm breakthrough. At equivalent ZnO loading, GFES yielded a breakthrough time twice as long as the ZnO/SiO2 sorbent; at equivalent bed volume, GFES provided a three times longer breakthrough time (with 67% reduction in ZnO loading) than packed beds of 1–2 mm commercial extrudates. GFES is highly regenerable compared with the commercial extrudates, and can easily be regenerated in situ in air at 500 °C. During 50 regeneration/desulfurization cycles, GFES maintained its desulfurization performance and structural integrity. A composite bed consisting of a packed bed of large extrudates followed by a polishing layer of GFES demonstrated a great extension in gas life and overall bed utilization. This approach synergistically combines the high volume loading of packed beds with the overall contacting efficiency of small particulates.  相似文献   

7.
Recovery of CO2 with monoethanolamine (MEA) and hot potassium carbonate (K2CO3) absorption processes in an integrated gasification combined cycle (IGCC) power plant was studied for the purpose of development of greenhouse gas control technology. Based on energy and exergy analysis of the two systems, improvement options were provided to further reduce energy penalty for the CO2 separation in the IGCC system. In the improvement options, the energy consumption for CO2 separation is reduced by about 32%. As a result, the thermal efficiency of IGCC system is increased by 2.15 percentage‐point for the IGCC system with MEA absorption, and by 1.56 percentage‐point for the IGCC system with K2CO3 absorption. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
For the production of bio-SNG (substitute natural gas) from syngas of biomass steam gasification, trace amounts of sulfur and tar compounds in raw syngas must be removed. In present work, biomass gasification and in-bed raw gas upgrading have been performed in a decoupled dual loop gasifier (DDLG), with aggregation-resistant nickel supported on calcined olivine (Ni/olivine) as the upgrading catalyst for simultaneous desulfurization and tar elimination of biogenous syngas. The effects of catalyst preparation, upgrading temperature and steam content of raw syngas on sulfur removal were investigated and the catalytic tar reforming at different temperatures was evaluated as well. It was found that 850 °C calcined Ni/olivine was efficient for both inorganic-sulfur (H2S) and organic-sulfur (thiophene) removal at 600–680 °C and the excellent desulfurization performance was maintained with wide range H2O content (27.0–40.7%). Meanwhile, tar was mostly eliminated and H2 content increased much in the same temperature range. The favorable results indicate that biomass gasification in DDLG with Ni/olivine as the upgrading bed material could be a promising approach to produce qualified biogenous syngas for bio-SNG production and other syngas-derived applications in electric power, heat or fuels.  相似文献   

9.
Within the carbon constrained world, biomass-based power production is expected to constitute one of the candidates for CO2 abatement. However, within the framework of a liberalised energy market, biomass power systems must be competitive from efficiency and cost point of view for their successful commercial breakthrough. Integrated gasification combined cycles (IGCC) based on pressurised biomass gasification, coupled with economical acceptable hot gas clean-up systems, are one of the most promising options. In this study, a technical and economic assessment is carried out of alternative power plant concepts with the aid of computer simulation tools. Various gas turbine plant sizes are considered ranging from 10 to 70 MWe and their performance is evaluated. Apart from stand-alone power systems, the study is complemented with cases linked with a coal-fired power plant by parallel integration of a gas turbine with the existing steam cycle.  相似文献   

10.
The U.S. Department of Energy is currently working on coupling coal gasification and high temperature fuel cell to produce electrical power in a highly efficient manner while being emissions free. Many investigations have already investigated the effects of major coal syngas species such as CO and H2S. However coal contains many trace species and the effect of these species on solid oxide fuel cell anode is not presently known. Warm gas cleanup systems are planned to be used with these advanced power generation systems for the removal of major constituents such as H2S and HCl but the operational parameters of such systems is not well defined at this point in time. This paper focuses on the effect of anticipated warm gas cleanup conditions has on trace specie partitioning between the vapor and condensed phase and the effects the trace vapor species have on the SOFC anode. Results show that Be, Cr, K, Na, V, and Z trace species will form condensed phases and should not effect SOFC anode performance since it is anticipated that the warm gas cleanup systems will have a high removal efficiency of particulate matter. Also the results show that Sb, As, Cd, Hg, Pb, P, and Se trace species form vapor phases and the Sb, As, and P vapor phase species show the ability to form secondary Ni phases in the SOFC anode.  相似文献   

11.
The aim of the CHRISGAS project was the development of a gasification technique to produce clean hydrogen-rich synthesis gas from biomass. In order to improve the process efficiency, this work presents a gas cleaning concept, which combines chemical hot gas cleaning with hot (1 MPa, 900 °C) and warm (1 MPa, 300 °C) filtration. As the focus is set on the removal of H2S, HCl and KCl, calculations on chemical gas cleaning for the hot and warm gas filter were done using a thermodynamic process model using SimuSage? (GTT-Technologies). The calculations show that Ca-based and Fe-based sorbents are not suitable H2S sorbents under the conditions of the hot gas filter. For Cu-based sorbents, H2S concentration below 100 cm3 m?3 is achievable, if the temperature is reduced below 810 °C. Additional calculations of KCl sorption on alumosilicates under the conditions of the hot gas filter show that the alkali concentration in gasifier-derived gases can be limited to 100 mm3 m?3. Thus, the condensation temperature of KCl can be decreased down to 580 °C. The results of HCl sorption calculations show that Na- and K-based sorbents are only suitable for temperatures below 600 °C. Therefore, the HCl sorption is transferred to the warm gas filter. The KCl sorption results were confirmed by experiments using bauxite, bentonite, kaolinite and naturally occurring zeolite as sorbents.  相似文献   

12.
Purification of CO and CO2 to the ppm level in H2-rich gas without losing H2 is one of the technical difficulties for fuel cell power systems. In this work, a two-column seven-step elevated temperature pressure swing system with high purification performance was proposed. The concept of reactive separation by adding water gas shift catalysts into the columns filled with elevated temperature CO2 adsorbents was adopted. The H2 recovery ratio and H2 purity were greatly improved by the introduction of steam rinse and steam purge, which could be realized due to the increasing operating temperature (200–450 °C). An optimized operating region to both achieve high efficiency and low energy consumption was proposed. The optimized case with 0.09 purge-to-feed ratio and 0.15 rinse-to-feed ratio could achieve 99.6% H2 recovery ratio and 99.9991% H2 purity at a stable state for a feed gas containing 1% CO, 1% CO2, 10% H2O, and 88% H2. No performance degradation was observed for at least 1000 cycles. The proposed (ET-PSA) system possessed self-purification ability while the columns were penetrated by CO2. It is however suggested that periodical heat regeneration should be adopted to accelerate performance recovery during long-term operation.  相似文献   

13.
H2S is a detrimental impurity that must be removed for upgrading biogas to biomethane. H2S removal selectivity over CO2 employing catalytic oxidative absorption method and its influence factors were studied in this work. The desulfurization experiments were performed in a laboratory apparatus using EDTA-Fe as the catalyst and metered mixture of 60% (v/v) CH4, 33% (v/v) CO2 and 2000–3000 ppmv H2S balanced by N2 as the simulated biogas. It was found that for a given catalytic oxidative desulfurization system, it exists a critical pH, at which desulfurization selectivity achieves the highest. It was also observed that desulfurization selectivity increased along with the increase of chelated iron concentration, gas flow rate, and ratio of gas flow rate to liquid flow rate (G/L). This demonstrated that high selectivity and high efficiency for biogas desulfurization could both be achieved through optimizing these parameters. Specific to the desulfurization system of this work, when the gas flow rate was set as 1.1 L/min, after optimizing the above mentioned parameters, i.e. EDTA-Fe concentration of 0.084 mol/L, absorption solution pH of 7.8, and G/L of 55, the desulfurization selectivity factor reached 142.1 with H2S removal efficiency attained 96.7%.  相似文献   

14.
Proton exchange membrane fuel cells (PEMFCs) most likely will use reformed fuel as the primary source for the anode feed which always contains carbon dioxide (CO) and hydrogen sulfide (H2S). Trace amount of CO and H2S can cause considerable cell performance losses. A comparison between the effect of CO and that of H2S on PEMFC performance was made in this paper. Under the same conditions, the H2S poisoning rate is much higher than CO because of different adsorption intensity. When the fuel stream contains the gas mixture (25 ppm CO and 25 ppm H2S), the fuel cell performance deteriorates more quickly than 50 ppm CO but slowly than 50 ppm H2S and can be only partially recovered by reintroducing neat H2. The resulting effects of the mixtures can be divided into two parts roughly: during the inception phase, the cell voltage drops quickly and the actual values of anode overvoltage are bigger than the corresponding calculated values; then the deterioration rate of the cell performance decreases gradually.  相似文献   

15.
The coal gasification process is used in commercial production of synthetic gas as a means toward clean use of coal. The conversion of solid coal into a gaseous phase creates opportunities to produce more energy forms than electricity (which is the case in coal combustion systems) and to separate CO2 in an effective manner for sequestration. The current work compares the energy and exergy efficiencies of an integrated coal-gasification combined-cycle power generation system with that of coal gasification-based hydrogen production system which uses water-gas shift and membrane reactors. Results suggest that the syngas-to-hydrogen (H2) system offers 35% higher energy and 17% higher exergy efficiencies than the syngas-to-electricity (IGCC) system. The specific CO2 emission from the hydrogen system was 5% lower than IGCC system. The Brayton cycle in the IGCC system draws much nitrogen after combustion along with CO2. Thus CO2 capture and compression become difficult due to the large volume of gases involved, unlike the hydrogen system which has 80% less nitrogen in its exhaust stream. The extra electrical power consumption for compressing the exhaust gases to store CO2 is above 70% for the IGCC system but is only 4.5% for the H2 system. Overall the syngas-to-hydrogen system appears advantageous to the IGCC system based on the current analysis.  相似文献   

16.
基于燃气轮机变工况的IGCC系统特性研究   总被引:1,自引:0,他引:1  
燃气轮机是IGCC系统中的关键部件,其性能变化直接影响到整个IGCC系统。本文利用Thermoflex软件建立200MW级IGCC系统模型,主要分析燃气轮机在40%~100%负荷下的IGCC系统变工况特性。通过燃气轮机初温及其压气机进口可转导叶IGV变化,分析了燃气轮机实现降负荷调节方式,并从系统角度出发,研究了基于燃气轮机变工况的IGCC系统主要性能参数的变化。本文的研究结果对未来IGCC电站的设计和运行具有一定的参考价值。  相似文献   

17.
CO2 capture and storage (CCS) has received significant attention recently and is recognized as an important option for reducing CO2 emissions from fossil fuel combustion. A particularly promising option involves the use of dry alkali metal-based sorbents to capture CO2 from flue gas. Here, alkali metal carbonates are used to capture CO2 in the presence of H2O to form either sodium or potassium bicarbonate at temperatures below 100 °C. A moderate temperature swing of 120–200 °C then causes the bicarbonate to decompose and release a mixture of CO2/H2O that can be converted into a “sequestration-ready” CO2 stream by condensing the steam. This process can be readily used for retrofitting existing facilities and easily integrated with new power generation facilities. It is ideally suited for coal-fired power plants incorporating wet flue gas desulfurization, due to the associated cooling and saturation of the flue gas. It is expected to be both cost effective and energy efficient.  相似文献   

18.
Activated carbons (ACs) treated with KOH-KI are very effective sorbents for deep H2S removal, as required by biogas use in high temperature fuel cell systems. For this application, the performance of a commercial KOH-KI treated AC was investigated through a systematic study based on dynamic adsorption tests. With reference to the composition of a real biogas produced in a wastewater treatment plant located in Barcelona, the present work presents a sensitivity performance analysis on singular and synergetic effects of gas matrix, humidity and oxygen on AC KOH-KI performance.The results revealed a positive role of water (up to 90% of relative humidity (R.H.)) for different gas matrices, enhanced by the simultaneous presence of small percentages of oxygen (2%v). A relevant influence of gas matrix composition was found (except for the case of oxygen addition to dry inlet streams), specifically in terms of a marked negative effect of CO2 and a significant sorption capacity increase for high percentage of methane. Sulfur dioxide was not detected in the outlet gas-phase for the investigated operating parameters (O2 2%v, R.H. 0–90%, H2S 100 ppmv, temperature 45 °C). Therefore, even in the case of further oxidation of adsorbed elemental sulfur to SO2, this product could be completely removed by AC KOH-KI.  相似文献   

19.
As part of the USDOE's Carbon Sequestration Program, an integrated modeling framework has been developed to evaluate the performance and cost of alternative carbon capture and storage (CCS) technologies for fossil-fueled power plants in the context of multi-pollutant control requirements. This paper uses the newly developed model of an integrated gasification combined cycle (IGCC) plant to analyze the effects of adding CCS to an IGCC system employing a GE quench gasifier with water gas shift reactors and a Selexol system for CO2 capture. Parameters of interest include the effects on plant performance and cost of varying the CO2 removal efficiency, the quality and cost of coal, and selected other factors affecting overall plant performance and cost. The stochastic simulation capability of the model is also used to illustrate the effect of uncertainties or variability in key process and cost parameters. The potential for advanced oxygen production and gas turbine technologies to reduce the cost and environmental impacts of IGCC with CCS is also analyzed.  相似文献   

20.
This study is devoted to technical evaluation of a carbon dioxide removal in an existing Integrated Gasification Combined Cycle (IGCC) plant. This IGCC case is based on an oxygen blown entrained flow gasifier operating at 27 bar, the removal of acid gas (H2S) is performed with MDEA unit, the efficiency of this IGCC is 43% based on the low heating value (LHV) of coal. A carbon dioxide separation unit conveniently integrated in a pre-combustion separation process is chosen, in order to take advantage of the high pressure of the gas. The methanol process for carbon dioxide removal is integrated downstream the existing desulfuration unit, and after a CO shift conversion unit. In this study, the integration of the CO2 capture process to the IGCC is simulated as realistically as possible. The design parameters of both the gas turbine (the turbine inlet temperature, compressor pressure ratio, reduced flow rate) and the steam turbine (Stodola parameter) are taken into account. Maintenance of low NOxNOx production in the combustion chamber is also considered. The production of NOxNOx is supposed to be influenced by the low heating value of the gas which is maintained as low as for case of the synthesis gas without CO2 capture. Thus the choice is made to feed the gas turbine of the combined cycle with a diluted synthesis gas, having similar low heating value than the one produced without the CO2 capture. Plant performances for different conversion and capture rates are compared. A final optimized integration is given for 92 mol% CO conversion rate and 95 mol% CO2 absorption rates, a comparison with former studies is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号