首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
l1范数作为重要的距离测度,在模式识别中有着较为广泛的应用。在不同的范数定义下,相同分类机理的分类算法一般会有不同的分类效果。本文提出l1范数下的最近邻凸包人脸识别算法。该算法将最近邻凸包分类算法的范数定义由l2范数推广到l1范数,以测试点到各训练类凸包的l2范数距离作为最近邻分类的相似性度量。在ORL标准人脸数据库上的验证实验中,该方法取得了良好的识别效果。  相似文献   

2.
基于样本选择的最近邻凸包分类器   总被引:1,自引:0,他引:1       下载免费PDF全文
最近邻凸包分类算法是一种以测试点到各类别样本凸包的距离为分类度量的最近邻分类算法。然而,该算法的凸二次规划问题优化求解的较高的计算复杂度限制了其在较大规模数据集上的应用。本文提出一种样本选择方法——子类凸包生长法。通过迭代,选择距离选出样本凸包最远的点,直到满足终止条件,从而实现数据集的有效约简。ORL数据库和MIT-CBCL人脸识别training-synthetic库上的实验结果表明,子类凸包生长法选出的少量样本生成的凸包能够很好的表征训练集,在不降低最近邻凸包分类器性能的同时,使得算法的计算速度大为提高。  相似文献   

3.
为了保证核最近邻凸包分类器有效地处理大训练集的应用问题,本文提出一种与该分类器相结合的核子类凸包样本选择方法.核子类凸包样本选择方法是一个类内迭代算法,该算法在核空间里每次迭代选择一个距离选择集样本张成子类凸包最远的样本.在Head Pose Image Database系列1图像集上的实验中,本文方法不但可以取得较高的识别率,而且与未经选样的核最近邻凸包分类器相比,其执行速度要快许多.  相似文献   

4.
Fisher鉴别特征的最近邻凸包分类   总被引:2,自引:0,他引:2  
基于Fisher准则的特征提取方法是模式识别技术的重要分支,其中,Foley-Sammon变换和具有统计不相关性的最佳鉴别变换是这一技术典型代表,本文将它们与一种新型分类器一最近邻凸包分类器相结合,从而实现Fisher鉴别特征的有效分类。最近邻凸包分类器是一类以测试样本点到各类训练集生成类别凸包的距离为分类判别依据的模式分类新方法,具有非线性性,无参性,多类别适用性等特点。实验证实了本文方法的有效性。  相似文献   

5.
为了保证核最近邻凸包分类器有效地处理大训练集的应用问题,提出一种核子空间样本选择方法与该分类器相结合。核子空间样本选择方法是一个类内迭代算法,该算法在核空间里每次迭代选择一个距离选择集样本张成子空间最远的样本。在MIT-CBCL人脸识别数据库的training-synthetic子库上的实验中,该方法不但可以取得100%的识别率,而且与未经选样的核最近邻凸包分类器相比,其执行速度要快许多。  相似文献   

6.
一种基于预分类的高效最近邻分类器算法   总被引:1,自引:0,他引:1  
本文的最近邻分类器算法是采用多分类器组合的方式对测试样本进行预分类,并根据预分类结果重新生成新的训练和测试样本集。对新的测试样本采用最近邻分类器进行分类识别,并将识别结果与预分类结果结合在一起进行正确率测试。在ORL人脸库上的实验结果说明,该算法对小样本数据的识别具有明显优势。  相似文献   

7.
基于子空间样本选择的最近凸包分类器   总被引:3,自引:0,他引:3       下载免费PDF全文
最近邻凸包分类器需要求解测试样本到训练集凸包距离的凸二次规划问题,对于训练集规模较大的情况,有必要在分类之前进行适当的样本选择。为此该文提出基于子空间样本选择的最近凸包分类方法。该方法首先采用子空间样本选择算法对训练集样本进行筛选,然后将各类选出的样本作为最近邻分类器的新的训练集。子空间样本选择方法的原理是在一类训练样本集内,迭代选择距离已选样本张成子空间最远的样本。在MIT-CBCL人脸识别数据库的training-synthetic子库的实验中,该方法只需5.6%的训练样本即可取得100%的识别率,并且执行时间较未经选样的最近邻凸包分类器也大为减少。  相似文献   

8.
现在已有许多特征用于人脸识别,而不同的特征反映了图像的不同特性。因此,结合多个特征,使用多分类器来进行分类可以提高识别率。文中在对原始图像进行小波变换预处理的基础上,抽取本征脸特性的奇异值特征,并利用对应着两类特征的多分类器进行分类。利用ORL人脸库进行了实验,实验结果证明了所提方法的有效性。  相似文献   

9.
本文提出了一种基于小波和DFB-PCA的人脸识别算法。将识别图像先用小波变换对其分解后,再对低频子带进行DFB-PCA识别。实验结果表明,该方法有利于减少光照、姿势和表情等因素的影响,降低噪声和图像识别的维数,且具有较好的鲁棒性。与直接在原图像上采用PCA识别相比,可提高对图像的计算速度和识别效率。  相似文献   

10.
本文针对k-最近邻方法分类效率不高的问题,提出了一种基于密度的训练样本集约减算法.该方法通过计算训练样本集中各类别的类别密度及整个训练集的平均密度,去掉高密度类别中的部分样本,使训练样本集具有更好的代表性.实验表明,该方法不仅提高了k-最近邻方法的分类效率,而且对其分类准确率也有一定程度的提高.  相似文献   

11.
In this paper, a novel center-based nearest neighbor (CNN) classifier is proposed to deal with the pattern classification problems. Unlike nearest feature line (NFL) method, CNN considers the line passing through a sample point with known label and the center of the sample class. This line is called the center-based line (CL). These lines seem to have more capacity of representation for sample classes than the original samples and thus can capture more information. Similar to NFL, CNN is based on the nearest distance from an unknown sample point to a certain CL for classification. As a result, the computation time of CNN can be shortened dramatically with less accuracy decrease when compared with NFL. The performance of CNN is demonstrated in one simulation experiment from computational biology and high classification accuracy has been achieved in the leave-one-out test. The comparisons with nearest neighbor (NN) classifier and NFL classifier indicate that this novel classifier achieves competitive performance.  相似文献   

12.
提出了融合小波变换和自适应类增广PCA(CAPCA)的人脸识别算法。用离散小波变换对人脸图像进行压缩,提取人脸的低频分量,再利用自适应的类增广PCA方法对小波变换后的人脸低频分量进行特征提取,从而达到进一步降维的目的。不同于类增广PCA,该方法不需要构建样本的类间信息,使用起来更加灵活,又由于小波变换对图像的预处理,算法的识别率和耗时也得到了进一步的优化。Yale和FERET库上的实验表明了该算法的有效性。  相似文献   

13.
We present the Nearest Subclass Classifier (NSC), which is a classification algorithm that unifies the flexibility of the nearest neighbor classifier with the robustness of the nearest mean classifier. The algorithm is based on the Maximum Variance Cluster algorithm and, as such, it belongs to the class of prototype-based classifiers. The variance constraint parameter of the cluster algorithm serves to regularize the classifier, that is, to prevent overfitting. With a low variance constraint value, the classifier turns into the nearest neighbor classifier and, with a high variance parameter, it becomes the nearest mean classifier with the respective properties. In other words, the number of prototypes ranges from the whole training set to only one per class. In the experiments, we compared the NSC with regard to its performance and data set compression ratio to several other prototype-based methods. On several data sets, the NSC performed similarly to the k-nearest neighbor classifier, which is a well-established classifier in many domains. Also concerning storage requirements and classification speed, the NSC has favorable properties, so it gives a good compromise between classification performance and efficiency.  相似文献   

14.
A bootstrap technique for nearest neighbor classifier design   总被引:4,自引:0,他引:4  
A bootstrap technique for nearest neighbor classifier design is proposed. Our primary interest in designing a classifier is in small training sample size situations. Conventional bootstrapping techniques sample the training samples with replacement. On the other hand, our technique generates bootstrap samples by locally combining original training samples. The nearest neighbor classifier is designed on the bootstrap samples and is tested on the test samples independent of training samples. The performance of the proposed classifier is demonstrated on three artificial data sets and one real data set. Experimental results show that the nearest neighbor classifier designed on the bootstrap samples outperforms the conventional k-NN classifiers as well as the edited 1-NN classifiers, particularly in high dimensions  相似文献   

15.
Face recognition algorithms often have to solve problems such as facial pose, illumination, and expression (PIE). To reduce the impacts, many researchers have been trying to find the best discriminant transformation in eigenspaces, either linear or nonlinear, to obtain better recognition results. Various researchers have also designed novel matching algorithms to reduce the PIE effects. In this study, a nearest feature space embedding (called NFS embedding) algorithm is proposed for face recognition. The distance between a point and the nearest feature line (NFL) or the NFS is embedded in the transformation through the discriminant analysis. Three factors, including class separability, neighborhood structure preservation, and NFS measurement, were considered to find the most effective and discriminating transformation in eigenspaces. The proposed method was evaluated by several benchmark databases and compared with several state-of-the-art algorithms. According to the compared results, the proposed method outperformed the other algorithms.  相似文献   

16.
光照变化易使人脸图像的灰度分布不均,造成局部对比度差别较大,会引起人脸识别正确率下降。为此在同态滤波的基础上,改变滤波函数,提出了高斯滤波的人脸识别方法,接着对滤波后的图像直方图均衡化,来增加图像的灰度动态范围,然后对人脸图像提取Gabor小波特征,最后利用最近邻法识别人脸图像。在光照变换明显的Yale B和CMU PIE数据库识别效果最好,降低了人脸图像的特征维数,缩短了特征提取时间,有效地提高了人脸识别率。  相似文献   

17.
针对人脸图像易受光线和表情影响的特点,提出了一种基于二进小波变换和仿生模式识别的人脸识别方法。应用样条二进小波对人脸图像进行处理,对得到的细节子图进行融合。在FFT和PCA处理与降维后,用仿生模式识别进行学习和识别。实验结果表明,该方法比传统方法具有更高的识别率。  相似文献   

18.
一种特征脸分析和小波变换相结合的人脸识别方法   总被引:9,自引:0,他引:9  
陈粟  倪林 《计算机应用》2004,24(10):75-77,81
摘要:提出一种特征脸分析和小波变换相结合的人脸识别方法(Eigenface wavelet transform),利用小波变换对人脸图像进行分解,然后对低频分量和中频平均分量分别运用特征脸分析构造“特征子空间”,并做空间投影分别求得两个分量的相似度矩阵,最后使用它们的加权矩阵来判决识别。该方法综合利用了特征脸分析高效、准确的优点和小波变换多分辨率、多尺度的特点,合理使用两次加权增加了结果的可信度,实验表明它既能大量减少计算量,又具有更高的识别率。  相似文献   

19.
In this study, we are concerned with face recognition using fuzzy fisherface approach and its fuzzy set based augmentation. The well-known fisherface method is relatively insensitive to substantial variations in light direction, face pose, and facial expression. This is accomplished by using both principal component analysis and Fisher's linear discriminant analysis. What makes most of the methods of face recognition (including the fisherface approach) similar is an assumption about the same level of typicality (relevance) of each face to the corresponding class (category). We propose to incorporate a gradual level of assignment to class being regarded as a membership grade with anticipation that such discrimination helps improve classification results. More specifically, when operating on feature vectors resulting from the PCA transformation we complete a Fuzzy K-nearest neighbor class assignment that produces the corresponding degrees of class membership. The comprehensive experiments completed on ORL, Yale, and CNU (Chungbuk National University) face databases show improved classification rates and reduced sensitivity to variations between face images caused by changes in illumination and viewing directions. The performance is compared vis-à-vis other commonly used methods, such as eigenface and fisherface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号