首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
某铁选矿厂磁选铁精矿铁品位为66.76%,硫含量居高不下,达到0.82%。为降低铁精矿中硫含量,在捕收剂丁基黄药和起泡剂2#油用量分别为290,140 g/t时,采用1次粗选流程进行浮选降硫活化剂筛选条件试验。结果表明:1不使用活化剂时,仅能使浮选铁精矿硫含量降低至0.43%,指标不理想;2使用活化剂硫酸铜、硫酸、氟硅酸铵、碳酸钠均能使铁精矿硫含量降低至0.25%以下,但硫酸铜、氟硅酸铵价格昂贵,最终铁损失偏高,硫酸会恶化浮选作业环境,因此选择碳酸钠为浮选降硫活化剂;3在碳酸钠1 500 g/t时,采用2粗1精闭路浮选处理铁精矿试样,最终获得的浮选铁精矿铁品位为66.95%、含硫0.24%,尾矿硫品位为26.40%,硫脱除率达71.38%,铁损失仅1.94%的满意指标。试验结果可为该选厂高硫铁精矿降硫浮选药剂制度的确定提供借鉴。  相似文献   

2.
某磁铁精矿铁品位为56.14%,硫含量为9.18%,95.75%的硫为磁黄铁矿中的硫。为达到铁精矿硫含量1%的目标,按磨矿—弱磁选—浮选原则流程进行提铁降硫选矿试验。结果表明,磁铁精矿在磨矿细度为-0.043 mm占85%的情况下,采用1粗1精弱磁选脱硅—1粗2精反浮选脱硫流程处理,可获得铁品位67.39%、硫含量0.80%的铁精矿,以及铁品位为62.54%、硫品位为17.50%的高铁硫精矿,为此类高硫磁铁精矿的提铁降硫提供了技术参考。  相似文献   

3.
对某硫矿物嵌布粒度超细、硫品位较高的铁精矿进行了反浮选脱硫试验研究,细度为-0074 mm 92.06%、硫含量为1.73%的铁精矿经采用合理的药剂组合反浮脱硫,使精矿硫品位降至0.8%以下,精矿产率为89.23%,精矿铁品位为65.46%,脱硫试验有效降低了精矿硫品位,提高了铁精矿铁品位,经济效益显著。  相似文献   

4.
针对贵州某铅和硫嵌布粒度细、硫含量较高的铅锌矿开展浮选工艺研究。结果表明,磨矿细度-0.074mm占60%,采用优先浮选流程,铅浮选流程为"一粗三精三扫"、锌浮选流程为"一粗三精三扫"、硫浮选流程为"一粗一精二扫",能获得合格精矿,铅精矿中铅品位43.29%、回收率78.33%,锌精矿中锌含量为44.90%、回收率91.21%,硫精矿硫含量为45.85%、回收率为58.99%。  相似文献   

5.
叶军建  张覃  周颖  姜毛  李先海 《金属矿山》2011,40(12):145-147
为分离某硫铁矿尾矿经弱磁选后所得精矿中主要以磁铁矿和磁黄铁矿形式存在的铁和硫,使该资源得到利用,对其进行了再选试验。试验结果表明,采用浮选-弱磁选-焙烧工艺可达到分离目的:原磁选精矿经浮选后,可获得硫品位为31.08%、硫回收率为82.91%的硫精矿;浮选尾矿经弱磁选和焙烧后,可获得铁品位为62.61%、硫含量为0.21%、SiO2含量为3.87%、对原磁选精矿铁回收率为31.03%的铁精矿。将所得硫精矿模拟制酸焙烧后对烧渣进行检测,烧渣铁品位为61.08%、硫含量为0.23%、SiO2含量为5.09%,可直接作为铁精矿利用。  相似文献   

6.
周源  郭文峰 《金属矿山》2012,41(3):152-154
某浮锌尾矿中硫含量为10.13%,主要硫化物为磁黄铁矿和黄铁矿。采用磁-浮联合流程进行了硫回收试验研究,通过1粗1精弱磁选和1粗1精1扫浮选可获得硫品位为35.59%、回收率为64.82%的磁选硫精矿和硫品位为31.09%、回收率为23.42%的浮选硫精矿,综合硫精矿硫品位为34.27%、回收率为88.24%。  相似文献   

7.
某含细粒磁黄铁矿铁锌矿石选矿工艺研究   总被引:1,自引:0,他引:1  
某铁锌矿石中可选矿回收的目的矿物为磁铁矿和闪锌矿,但部分闪锌矿中包裹有磁性较强、粒度较细的磁黄铁矿,处理不当易导致铁精矿中硫含量超标或影响锌精矿品位。为了给该矿石的开发提供技术支撑,对其进行了选矿工艺研究。结果表明:采用先浮选锌后弱磁选铁的原则流程,可以解决铁精矿硫超标问题;将锌粗精矿再磨至-400目占85%后再精选,可以保证锌精矿品位。试验最终获得了锌品位为48.74%、锌回收率为86.92%的锌精矿和铁品位为63.29%、铁回收率为90.58%、硫含量为0.29%的铁精矿。  相似文献   

8.
安徽某铜矿尾矿的选铁降硫试验研究   总被引:1,自引:0,他引:1  
根据安徽某铜矿尾矿的矿石性质,采用磁选-铁粗精矿分级-粗粒精矿再磨-磁选-浮选流程,试验结果表明,可获得产率54.75%,铁品位67.59%,回收率84.74%,含硫0.047%的铁精矿。提高了该尾矿的铁精矿品位和回收率,并降低了铁精矿中的硫含量。  相似文献   

9.
司家营铁矿选矿厂氧化矿选别系列重选精矿,通过增加弱磁选脱硫作业降低铁精矿硫含量,但造成浮选作业给矿磁性率下降、浮选精矿指标恶化,因此进行浮选给矿磁性率试验。结果表明,在一定范围内,给矿磁性率越高,氧化矿系列浮选精矿铁品位越高;将磁铁矿选别系列部分一磁精矿给入氧化矿系列一段旋流器泵池进行改造,以增大浮选给矿磁性率。改造后,氧化矿系列浮选给矿磁性率由7.5%增大到11.0%,浮选精矿铁品位合格率增加了25.0个百分点以上,且提高了磁铁矿系列流程处理能力,综合效益明显。  相似文献   

10.
介绍了对某铜选厂尾矿中的高硫铁资源采用QY-309混合捕收剂反浮选脱硫除杂,取得了良好的试验结果,浮选精矿可作为高炉炼铁优质原料。对弱磁精矿直接浮选,取得了浮选精矿铁品位为67.56%,硫含量仅为0.13%的指标;分析了影响脱硫作业的主要因素,并对反浮选作业进行了初步的技术经济分析。  相似文献   

11.
介绍了新疆某磁铁矿的矿石性质和浮选脱硫的试验研究结果。试验结果表明,以丁基黄药为捕收剂,CuSO4+Na2S为组合活化剂,经先浮选后磁选工艺流程,可将铁精矿品位提高到65%以上,硫含量降至0.30%以下。试验实现了对铜、硫的综合回收。  相似文献   

12.
贵州某贫赤铁矿石属典型的高硅铝、低硫磷赤铁矿石,铁矿物嵌布粒度微细,常规选矿工艺难以获得合格铁精矿。为开发利用该大型贫赤铁矿石资源,对该矿石进行了选择性絮凝沉降脱泥-反浮选提铁降杂试验研究。结果表明,在磨矿细度为-0.045 mm占88%的情况下,经2次絮凝沉降脱泥,1粗1精1扫、中矿顺序返回闭路反浮选流程处理,可获得铁品位为61.20%,SiO2和Al2O3含量分别为6.30%和2.58%,铁回收率为66.48%的铁精矿,该流程与常规还原焙烧-弱磁选流程比较,具有显著的流程简单、能耗和生产成本低的特点。  相似文献   

13.
对铁品位62.26%、含硫3.14%的墨西哥某含硫铁矿石开展了提质降杂选矿试验研究。采用浮选-弱磁选-强磁选工艺,可获得精矿产率87.12%、铁回收率92.59%、TFe品位65.17%、S含量0.261%、SiO2含量3.86%的综合铁精矿,同时获得产率7.53%、S品位37.22%的合格硫精矿。该高硫铁矿配入梅山自产原矿混合选铁,生产中通过提高强磁扫选磁场强度,在保证最终铁精矿品位57%前提下,可多从尾矿中回收铁品位32%的弱磁性矿物。  相似文献   

14.
某提铁降杂独立精选厂的工艺设计与生产实践   总被引:1,自引:0,他引:1  
山西某地有着为数众多的磁铁矿小型选厂,产出的弱磁选铁精矿铁品位仅61%~58%、SiO2含量达12%~15%,不符合高炉炼铁的精料方针,严重影响销售。为此,在试验研究的基础上,采用反浮选-中矿再磨-弱磁选工艺及可在常温下进行浮选的高效阴离子捕收剂LP-4,结合当地实际情况设计、建设了对这些弱磁选铁精矿集中进行提铁降杂的独立精选厂。生产实践表明,该独立精选厂工艺流程运行稳定,适应性强,可使最终精矿铁品位达到67.2%~66.5%,SiO2含量降至5.2%~5.8%,提铁降杂效果良好。  相似文献   

15.
对秘鲁某含Cu 0.12%、Au 0.12 g/t、S 2.60%、Fe 45.52%的金铜铁多金属矿石进行了选矿工艺优化试验研究。该矿石原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,提出采用铜硫等可浮—铜硫分离—难选硫强化浮选—浮选尾矿磁选回收铁的优化工艺流程。铜硫等可浮分选时,在无碱条件下采用选择性的铜捕收剂BK306将铜和部分易浮黄铁矿等硫化矿物浮出,并进行铜硫分离回收铜、金;然后采用活化剂和强力捕收剂强化浮选脱除矿石中的难浮硫化物;最后通过磁选从浮选尾矿中回收铁。该优化工艺既可实现矿石中铜、金等有价金属的高效回收和硫的脱除,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业直接获得含硫低、铁品质较好的铁精矿。闭路试验获得铜品位20.10%、金品位15.29 g/t、铜回收率68.42%、金回收率49.07%的铜精矿,硫品位30.78%、总硫回收率84.05%的硫精矿以及铁品位68.88%、含硫0.18%、铁回收率90.57%的铁精矿。与原工艺相比,优化工艺的铜精矿铜品位和铜回收率分别提...  相似文献   

16.
柿竹园钨钼铋萤石多金属矿伴生有少量的磁铁矿,其全铁品位为7.15%,磁铁矿中铁品位为1.68%,占全铁的23.50%。该钨钼铋萤石多金属矿整个选矿工艺流程采用“柿竹园法”,其中,在回收钨、钼、铋、萤石等有用矿物前,采用中磁磁选将磁铁矿优先脱出,以避免磁铁矿对后续选别作业造成干扰,产出磁铁矿粗精矿。由于近年来铁矿石价格上涨态势明显,为进一步提高矿产资源的综合利用率和挖掘企业新经济增长点,决定对该磁铁矿粗精矿进行提质选矿实验研究。通过对该磁铁矿粗精矿矿石性质进行研究,发现该磁铁矿粗精矿存在嵌布粒度细、含磁硫高的特点。为提高磁铁矿精矿品质,必须提高磁铁矿精矿中铁的品位,同时还要降低磁铁矿精矿中硫的含量。提高磁铁矿精矿铁品位采用细磨的方法,使磁铁矿充分单体解离,然后通过弱磁选可将铁精矿品位提高;而要降低磁铁矿精矿中硫含量的方法,一般来说采用反浮选脱硫,需要通过实验找到跟该矿石性质相适应的反浮选脱硫工艺流程与参数,确保磁铁矿中磁硫的高效脱除。在经过系统的选矿实验研究后,确定了采用先脱磁再反浮选脱硫,再通过阶段磨矿阶段选别的选矿工艺流程,可以大幅度提高最终磁铁矿精矿品质。在磁铁矿粗精矿品位TFe 38.19%、含S 4.51%时,可以获得最终磁铁矿精矿品位TFe 60.85%、含S 0.99%,铁作业回收率72.13%的良好实验指标。该工艺在现场得到应用,通过优化现场流程结构配置,取得良好效果,为企业新增经济效益显著。  相似文献   

17.
孙炳泉  高春庆 《金属矿山》2015,44(11):57-61
国外某铁矿石铁品位为31.92%、SiO2含量为46.44%,矿石矿物嵌布粒度微细。为探索在较粗磨矿细度条件下获得高质量铁精矿的高效选矿工艺,对其进行了选矿流程试验。实验室试验结果表明:采用阶段磨矿-弱磁选-磁选柱分选工艺,当磨矿细度达到-0.043 mm占95%时,才能获得铁品位大于68%、硅含量小于5%的高质量铁精矿;而采用阶段磨矿-弱磁选-反浮选工艺,当磨矿细度放粗至-0.076 mm占90%时,即可获得铁品位大于68%、硅含量小于5%的铁精矿,且可减少三段磨矿量45%以上。扩大连续试验结果表明,原矿经两段阶段磨矿 (-0.076 mm占90%)-弱磁选-反浮选-反浮选尾矿脱水后再磨(-0.038 mm占95%)再选流程选别,可获得精矿铁品位68.12%、SiO2含量4.59%、铁回收率70.02%、磁性铁回收率96.83%的指标,实现了该矿石的高效分选。  相似文献   

18.
昆钢大红山铁矿二选厂采用振动螺旋溜槽+摇床重选工艺代替浮选工艺,对铁品位49.43%,S iO2含量16.71%的强磁选精矿进行选别,精矿铁品位提高到58.71%,S iO2含量降到12.32%,铁回收率85.21%,达到了降低S iO2技改含量,提高铁精矿品位,节约成本的目的。  相似文献   

19.
胡义明  刘安平  徐望华 《金属矿山》2013,42(8):47-52,87
为了给梅山铁矿选矿厂降低铁精矿硅含量提供技术支持,在查明现场铁精矿SiO2含量高的原因基础上,采用4种方案进行了从现场浮硫尾矿获取SiO2含量<4%的铁精矿的选矿试验。结果表明,方案1(在现场选铁流程基础上增加弱磁精选并在高梯度磁选时采用低场强)、方案3(弱磁选-高梯度磁选-细筛分级-筛上再磨再选)和方案4(弱磁选-高梯度磁选-弱酸性正浮选)均可获得SiO2含量<4%的铁精矿,但方案1精矿铁品位相对较高而铁回收率相对较低,方案3和方案4则铁回收率相对较高而精矿铁品位相对较低。因此,究竟采用哪种方案,还应通过进一步的扩大试验乃至工业试验予以确定。  相似文献   

20.
浮选分离某磁铁矿和富含磁黄铁矿的试验研究   总被引:6,自引:5,他引:6  
陈雯 《金属矿山》2003,(5):33-35
介绍了磁铁矿的矿石性质、分离浮选的试验研究结果。试验结果表明,采用以丁基黄药为基料的复合捕收剂,经先浮选后磁选工艺流程,可将铁精矿品位提高到66%以上,硫含量降至0.3%以下,改变了该矿因产品硫含量过高而停产的局面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号