首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) ionic liquid (IL) and microwave heating was used to esterify oleic acid as a green approach in biodiesel synthesis. To compare the heating systems, conventional heating and the ultrasonic method were employed but the microwave method was found to be more effective. H2SO4 and 1-methyl imidazole hydrogen sulfate ([Hmim]HSO4) were also used in the esterification of oleic acid and their catalytic activities were compared to that of [Bmim]HSO4. ILs provided some advantages such as reusability, easy recyclability, and very stable activity. There was only a small decrease in the catalytic activity of [Bmim]HSO4 after four successive applications, which means that ILs can be reused, contrary to homogeneous catalysts. The combination of IL catalysts and microwave irradiation proved to be a potential alternative method for biodiesel production.  相似文献   

2.
An ultrasonic-assisted extraction (UAE) method based on the acidic ionic liquid (IL) of 1-methyl-3-H-imidazolium hydrogen sulfate ([HMIM][HSO4]) has been successfully developed to extract leonurine from Herba Leonuri. The results indicate that the acidity of the IL has remarkable effect on the extraction efficiency. In addition, several parameters affecting the extraction efficiency, such as ultrasonic power and time, concentration of IL and solid-liquid ratio, were also optimized. Using the proposed approach, the extraction efficiency of leonurine from Herba Leonuri powder reached 0.136‰ within 30 min using only 20 mL of 1 mol·L?1 [HMIM][HSO4] aqueous solution.  相似文献   

3.
1-Butyl-3-methylimidazolium hydrogen sulfate ([Bmim][HSO4]) is utilized to catalyze transesterification of camelina oil with methanol. The major compositions of camelina biodiesel are saturated fatty acid esters (C16:0, C18:0), monounsaturated, and polyunsaturated fatty acid esters (C18:2, C18:3). The effects of reaction temperature, reaction time, Mmethanol:MCamelina oil, and M[Bmim][HSO4]:MCamelina oil on biodiesel production are investigated in detail, and a general mathematical model is developed to well predict the biodiesel yield. Also, [Bmim][HSO4] is thermally stable to recycle for four times with a high biodiesel yield. The fuel properties of camelina biodiesel are all comparable to the American Society for Testing Materials (ASTM) standards.  相似文献   

4.
The hydrolysis of poly(ethylene terephthalate) (PET) was studied using ionic liquid 1‐n‐butyl‐3‐methylimidazolium chloride ([Bmim][Cl]) as solvent and acid‐functionalized ionic liquid 1‐methyl‐3‐(3‐sulfopropyl)‐imidazolium hydrogen sulfate ([HSOpmim][HSO4]) as catalyst. The effects of temperature, time, and dosages of solvent and catalyst on hydrolysis results were examined. Under the optimum conditions of m(PET) : m(H2O) : m([Bmim][Cl]) : m([HSOpmim][HSO4]) = 3 : 4 : 6 : 0.6, reaction temperature 170°C and time 4.5 h, the conversion of PET and the yield of terephthalic acid (TPA) were almost 100% and ≥88%, respectively. After easily separated from the product, the ionic liquids could be reused eight times without obvious decrease in the conversion of PET and yield of TPA. Hence, an environmental friendly strategy for chemical recycling of PET was developed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
利用疏水性离子液体1-丁基-3-甲基咪唑六氟磷酸盐[Bmim][PF6]、1-丁基-3-乙基咪唑六氟磷酸盐[Beim][PF6]、1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐[Bmim][Tf2N]对水溶液中的9种芳香化合物进行萃取,以苯胺为代表对萃取工艺进行了优化,考察了乙醚、正丁醇等低极性溶剂对离子液体的再生情况. 结果表明,在室温下,当相比O/A=0.2、时间为10 min时,[Bmim][PF6]对苯胺的萃取率达87.2%,分配系数为34.1,效果明显高于甲苯、正辛醇等传统有机溶剂. 芳香化合物的分子结构对萃取有较大影响,萃取率及分配系数随溶质疏水性增加而增加. 用乙醚作为反萃剂效果较好,苯胺和离子液体的回收率分别为93.1%和95.2%,溶质及离子液体均能实现资源化回收利用.  相似文献   

6.
Tri-methylammonium-butane sulfonate (TMBSA) ionic liquid (IL) catalyzed efficiently acetylation of acetic anhydride with various alcohols, hydroxyesters and phenols, under solvent-free conditions was described as a novel method. [TMBSA][HSO4] ionic liquid (1.0 mol%) is able to promote quantitative acetylation at low temperature, in high conversion and selectivity (≥95%). The process is highly effective, environmentally benign, and very selective. Furthermore, [TMBSA][HSO4] ionic liquid was conveniently separated with the products and easily recycled to catalyze acetylation reaction again with excellent yields.  相似文献   

7.
Seven typical quaternary ammonium ionic liquids, amino acid ionic liquids, and imidazolium ionic liquids were synthesized, characterized, and investigated as co-catalyst for the sulfuric acid catalyzed isobutane alkylation. The results show that the introduction of [OPSIm][HSO4] or [Pr3NPS][HSO4] both leads to a better catalytic performance and higher quality of alkylate products. The molecular dynamic simulation indicates that the [OPSIm][HSO4] can promote the dissolution of isobutane molecules at interface, further improving the ratio of isobutane to olefin from 1.02 to 1.18. Differently, the [Pr3NPS][HSO4] can significantly increase the interface width from 0.66 to 0.97 nm and reduce the interface tension from 28.49 to 14.62 mN/m, thereby enhancing the reaction area and improving the ion transfer. The [Pro][HSO4] and [Gly][HSO4] result in a worse quality of alkylate products due to no positive effect on the interfacial properties such as interfacial solubility of isobutane.  相似文献   

8.
Liquid phase dehydration of glycerol to acrolein catalyzed by Brønsted acidic ionic liquids (BAILs) using semi-batch reaction technique was investigated. For the BAILs catalysts, the acrolein yields were in an order of [Bmim]H2PO4 > [Bmim]HSO4 > [BPy]HSO4 > [PSPy]HSO4 > [N2224]HSO4 > [PSPy]H2PO4 > [BPy]H2PO4 > [N2224]H2PO4. When [Bmim]H2PO4 and [Bmim]HSO4 were used as the catalysts at 270 °C with the molar ratio of catalyst to glycerol of 1:100, the acrolein yields were 57.4% and 50.8%, respectively, at complete conversion of glycerol. The BAILs with [Bmim] cation and moderate acidity favored the formation of acrolein in liquid phase glycerol dehydration.  相似文献   

9.
Thermal analysis and gasification study of spent coffee ground (SCG) pretreated with ionic liquids (ILs) is presented. Four ILs, namely, 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), tributylmethylammonium chloride ([N1444][Cl]), and trihexyltetradecylphosphonium chloride ([P66614][Cl]), were investigated. The pretreatment was followed by thermogravimetric analysis. The syngas composition was computed using an equilibrium-based steam-O2 gasification model developed in Aspen Plus® by varying gasifier temperature and steam/biomass ratio. All ILs reduced the ash content, enhanced the volatility as well as the higher heating value of SCG. IL pretreatment also decreased CO2 and CH4 contents showing environmental benefits of using ILs.  相似文献   

10.
Nanocellulose, which is biodegradable and possesses excellent physicochemical properties, has high potential in many applications. However, its intrinsic hydrophilic nature makes it difficult to be used as fillers in most hydrophobic polymer composites. Here, cellulose nanocrystals (CNCs) were successfully prepared using 1-hexly-3-methylimidazolium hydrogen sulfate [Hmim][HSO4] ionic liquid under optimized conditions at 71°C, ultra-sonication amplitude of 69%, and ultrasonication time of 23 min. The prepared CNCs were surface-modified using 1-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4]. A 3D printable nanocomposite filament containing CNCs embedded in polylactic acid was fabricated via extrusion process at 170°C. The prepared filaments were characterized using universal testing machine, field emission scanning electron microscopy, thermogravimetric analysis, and FTIR. It was shown that CNCs had a diameter and length of 10–24 and 60–400 nm, respectively. It was also found that incorporating 2 wt% of CNCs into the matrix phase increased filaments tensile strength by 2.5% (from 54.59 to 57.35 MPa) due to the plasticization effect of [Bmim][BF4]. The prepared composites exhibited lower activation energies compared to neat PLA due to the small traces of sulfate group on F-CNC. The mechanical attributes of CNCs/PLA nanocomposites were retained at values comparable to that of fresh PLA and were demonstrated to be 3D printable.  相似文献   

11.
Gold/1-butyl-3-methylimidazolium hexafluorophosphate (Au/[Bmim][PF6]) nanofluids containing different stabilizing agents were fabricated by a facile one-step chemical reduction method, of which the nanofluids stabilized by cetyltrimethylammonium bromide (CTABr) exhibited ultrahighly thermodynamic stability. The transmission electron microscopy, UV-visible absorption, Fourier transform infrared, and X-ray photoelectron characterizations were conducted to reveal the stable mechanism. Then, the tribological properties of these ionic liquid (IL)-based gold nanofluids were first investigated in more detail. In comparison with pure [Bmim][PF6] and the nanofluids possessing poor stability, the nanofluids with high stability exhibited much better friction-reduction and anti-wear properties. For instance, the friction coefficient and wear volume lubricated by the nanofluid with rather low volumetric concentration (1.02 × 10-3%) stabilized by CTABr under 800 N are 13.8 and 45.4% lower than that of pure [Bmim][PF6], confirming that soft Au nanoparticles (Au NPs) also can be excellent additives for high performance lubricants especially under high loads. Moreover, the thermal conductivity (TC) of the stable nanofluids with three volumetric fraction (2.55 × 10-4, 5.1 × 10-4, and 1.02 × 10-3%) was also measured by a transient hot wire method as a function of temperature (33 to 81°C). The results indicate that the TC of the nanofluid (1.02 × 10-3%) is 13.1% higher than that of [Bmim][PF6] at 81°C but no obvious variation at 33°C. The conspicuously temperature-dependent and greatly enhanced TC of Au/[Bmim][PF6] nanofluids stabilized by CTABr could be attributed to micro-convection caused by the Brownian motion of Au NPs. Our results should open new avenues to utilize Au NPs and ILs in tribology and the high-temperature heat transfer field.  相似文献   

12.
Phytosterols and their derivatives have been attracting much attention because of their potential beneficial effects on human health. However, the free phytosterols are insoluble in water and poorly soluble in oil and fat, thus limiting their application. So far, many studies have been done to improve the oil solubility of phytosterols, but little research has been reported to improve their water solubility. In this study, hydrophilic phytosterol derivatives (phytosteryl polyethylene glycol succinate, PPGS) was efficiently synthesized, through an intermediate phytosteryl hemisuccinate (PSHS), which was first chemically prepared and subsequently coupled with polyethylene glycol (PEG) using acidic ionic liquids (IL) as catalyst via 2‐batch or 1‐pot stepwise esterification routes. The chemical structure of the products was characterized by thin layer chromatography, Fourier transform infrared spectroscopy, and mass spectroscopy, suggesting that hydrophilic phytosterol derivatives were successfully synthesized. As for 2‐batch esterification route, the mass and molar conversion of PSHS to PPGS could reach above 97 and 88% under the optimum conditions: [BSO3HMim][HSO4] as the catalyst, IL load of 6%, molar ratio of PEG 2000 to PSHS at 1:1.25, 110 °C, and 1 hour. Using the 1‐pot stepwise route, the conversion of phytosterols to PSHS could achieve above 92% for 2 hours, and the mass and molar conversion of PSHS to PPGS could achieve above 97 and 90% for 12 extra hours. Both 2‐batch and 1‐pot stepwise routes using the same IL displayed high conversion, suggesting that IL [BSO3HMim][HSO4] could be used as the potential catalyst and 2 routes could be used as highly efficient route for PPGS synthesis.  相似文献   

13.
The phase equilibria of thiophene in 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim][BF4]) is calculated by Monte Carlo simulation in Gibbs ensemble using a united atom force field. The liquid density of studied ionic liquid and the vapor pressure of thiophene in [Bmim][BF4] were compared with corresponding experimental data reported in the literature, and a good agreement was obtained. In order to describe the solubility of thiophene in this ionic liquid, we have calculated the radial distribution functions and spatial distribution functions of thiophene/IL mixtures to study the interaction of thiophene with cations and anions of [Bmim][BF4] in the liquid phase. The local composition concept in fluid was also examined to give further insight into the liquid structure. The results show that thiophene is well organized around the terminal carbon atom of the butyl or methyl chain attached to the imidazolium ring of cations and tends to adopt a symmetrically distribution on the anions. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3916–3924, 2014  相似文献   

14.
The gas–liquid two-phase flow pattern, absorption rate and pressure drop of CO2 absorbed into the aqueous solution of the task-specific ionic liquids (1-aminopropyl-3-methylimidazole tetrafluoroborate [Apmim][BF4] and 1-hydroxyethyl-3-methylimidazole tetrafluoroborate [OHemim][BF4]) and halide-free ionic liquid 1-butyl-3-methylimidazolium methylsulfate [Bmim][CH3SO4] were investigated in a microreactor. The absorption mechanism of the three ionic liquids was analyzed employing the 13C NMR spectroscopy. The [Apmim][BF4] was found to have the best ability of CO2 capture compared with the other two ionic liquids, as chemical absorption occurred between [Apmim][BF4] and CO2, while only physical absorption took place between [OHemim][BF4]/[Bmim][CH3SO4] and CO2. The sequence of CO2 absorption rate in three ionic liquids aqueous solutions is: [Apmim][BF4] > [Bmim][CH3SO4] > [OHemim][BF4]. Furthermore, the effects of gas–liquid flow rate and ionic liquids concentration on CO2 absorption rate and pressure drop were studied, the pressure drop models based on various flow patterns were proposed.  相似文献   

15.
The methanolysis of poly(lactic acid) (PLA) was studied by using acidic ionic liquids (ILs) as catalyst in detail. The results showed that HSO3‐functionalized ILs exhibited higher catalytic activity than non‐functionalized ILs and traditional acid catalyst such as H2SO4. The influences of experimental parameters, such as the amount of catalyst, reaction temperature, methanolysis time, and dosages of methanol on the conversion of PLA, yield of methyl lactate were investigated. Under the optimal conditions, using 1‐methyl‐3‐(3‐sulfopropyl)‐immidazolium hydrogen sulfate ([HSO3‐pmim][HSO4]) as catalyst, the IL could be reused up to six times without apparent decrease in the conversion of PLA and yield of methyl lactate. The kinetics of the reaction was also investigated. The results indicated that the methanolysis of PLA in [HSO3‐pmim][HSO4] was a first‐order kinetic reaction with activation energy of 47.01 kJ/mol and Arrhenius constant of 2.7 × 107 min?1. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40817.  相似文献   

16.
CO2 sorption capacities of the neat and silica‐supported 1‐butyl‐3‐methylimidazolium‐based ionic liquids (ILs) were measured under atmospheric pressure. The silica‐supported ILs were synthesized by the impregnation‐vaporization method and charactrized by N2 adsorption/desorption and thermogravimeteric analysis (TGA). Evaluation of the effects of influential factors on sorption capacity demonstrated that by increase of the temperature, flow rate, and the weight percentage of ILs in sorbents, the sorption capacity decreases. Among the sorbents, [Bmim][TfO] and SiO2‐[Bmim][BF4](50) had the highest capacity. By increasing the IL portion in SiO2‐[Bmim][BF4], the selectivity for CO2 to CH4 could be improved. The CO2‐rich sorbents could be easily recycled.  相似文献   

17.
To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO4. Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H2O2/sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively.  相似文献   

18.
Prins reaction, used to prepare dioxanes, has been limited by complex catalyst separation and reusability. In this article, six water-stable Brønsted acidic task-specific ionic liquids ([HMIM]BF4,[(CH2)4SO3HMIM][HSO4], [(Ac)2BIM]Br, [NMP][HSO4], [BMIM][HSO4] and [BMIM][H2PO4] were synthesized and used as environmentally benign catalysts for Prins reaction under mild reaction conditions for the first time. The process is highly effective and environmentally benign. Furthermore, [BMIM][HSO4] was conveniently separated with the products and easily recycled to catalyze Prins reaction again with excellent yields.  相似文献   

19.
Ionic liquids (ILs), named also as liquid salts, are compounds that have unique properties and molecular architecture. ILs are used in various industries; however, due to their toxicity, the ILs’ recovery from the postreaction solutions is also a very important issue. In this paper, the possibility of 1,3-dialkylimidazolium IL, especially the N,N-dibutylimidazolium chloride ([C4C4IM]Cl) recovery by using the electrodialysis (ED) method was investigated. The influence of [C4C4IM]Cl concentration in diluate solution on the ED efficiency was determined. Moreover, the influence of IL on the ion-exchange membranes’ morphology was examined. The recovery of [C4C4IM]Cl, the [C4C4IM]Cl flux across membranes, the [C4C4IM]Cl concentration degree, the energy consumption, and the current efficiency were determined. The results showed that the ED allows for the [C4C4IM]Cl recovery and concentration from dilute solutions. It was found that the [C4C4IM]Cl content in the concentrates after ED was above three times higher than in the initial diluate solutions. It was noted that the ED of solutions containing 5–20 g/L [C4C4IM]Cl allows for ILs recovery in the range of 73.77–92.45% with current efficiency from 68.66% to 92.99%. The [C4C4IM]Cl recovery depended upon the initial [C4C4IM]Cl concentration in the working solution. The highest [C4C4IM]Cl recovery (92.45%) and ED efficiency (92.99%) were obtained when the [C4C4IM]Cl content in the diluate solution was equal 20 g/L. Presented results proved that ED can be an interesting and effective method for the [C4C4IM]Cl recovery from the dilute aqueous solutions.  相似文献   

20.
A series of systems of 1‐butyl‐3‐methylimidazolium acetate ([Bmim][Ac]), 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim][BF4]), and 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmim][Tf2N]) with a small amount of water were simulated. Viscosities of systems were obtained by nonequilibrium molecule dynamics simulation and the results show that the viscosities change in different ways: for [Bmim][BF4] and [Bmim][Tf2N], viscosities decrease rapidly in the first stage, and then decrease slowly with the increase of water content. But for [Bmim][Ac], the viscosities increase first and then decrease. The unique phenomenon of [Bmim][Ac] can be attributed to the formation of chain‐like structure of anion???water???anion???. Hydrogen bond (HB) interaction between ion pairs is weakened, but the number of HB between water and anions increases with increase of water content. Besides, the microstructures of water in ionic liquids‐water systems were compared and found that the distribution of water is more concentrated in [Bmim][Tf2N]‐H2O system, while it is isotropy in [Bmim][Ac]‐H2O system. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2248–2256, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号