首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of NO on vanadia–titania samples pre-subjected to different reduction treatments has been studied by FTIR spectroscopy. When the NO adsorption is performed at 85 K on oxidized samples, antisymmetric NONO species, typical for V5+ sites, are detected and characterized by bands at 1779 and 1686 cm−1. At ambient temperature, however, adsorption is negligible and only with time reactive adsorption occurs producing NO+ (2120 cm−1), nitro/nitrato species (bands in the 1650–1100 cm−1 region) and weakly adsorbed NO (broad band at 1915 cm−1). Adsorption of NO at ambient temperature on reduced samples results in the formation of two types of species: (i) V4+(NO)2 dinitrosyls characterized by νs(NO) and νas(NO) at 1903–1880 and 1769–1753 cm−1, respectively, and (ii) V3+(NO)2 complexes, which give rise to νs(NO) at 1834–1822 cm−1 and νas(NO) at 1697–1685 cm−1. At low temperature the dinitrosyls are transformed into species in which more than one (NO)2 dimer is attached to one cationic site. Addition of O2 to NO, preadsorbed on reduced vanadia–titania samples, results in a fast oxidation of the V3+(NO)2 species, whereas the V4+(NO)2 complexes are more stable and do not disappear completely in the presence of oxygen. The results obtained suggest that NO is a convenient probe molecule for the analysis of the oxidation state of vanadium in vanadia–titania catalysts. To prevent oxidation of reduced vanadium sites, low equilibrium pressures of NO and registration of the IR spectrum soon after the NO admission are recommended. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
A series of Cu–ZrO2 catalysts with Cu content in the range of 10–70 at.% Cu (=100×Cu/(Cu+Zr)) were prepared by coprecipitation, and their performances were tested for the water-gas-shift (WGS) reaction. The activity of the catalyst increased with Cu loading and, depending on the loading, the activity was comparable to or better than the activity of a conventional Cu–ZnO–Al2O3 catalyst at low temperatures below 473 K. Characterization of the catalysts revealed that the amount of Cu+ present on the catalyst surface, after being reduced by a H2 mixture at 573 K, was well correlated with the activity of the catalyst, indicating that the Cu+ species were the active sites of the WGS reaction. The easy redox between Cu2+ and Cu+ during the WGS reaction was considered to be responsible for the high activity of Cu–ZrO2 at low temperatures. A reaction mechanism based on the redox was proposed.  相似文献   

3.
The Au/MnO x /TiO2 catalyst was used for the photocatalytic oxidation of carbon monoxide. The catalytic activity of Au/MnO x /TiO2 with low concentration of manganese (3–7 mol%) was much higher than that of Au/TiO2. The surface of Au/MnO x /TiO2 was characterized by XPS and Raman spectroscopy. While the main state of manganese in 13.8 mol% MnO x /TiO2 was Mn4+ species, Mn3+ was the dominant species in the samples with below 6.5 mol% manganese. Raman spectroscopy revealed that the interaction between the MnO x and TiO2 form Mn–O–Ti species in which the state of manganese was Mn3+. The Au particles also interacted with both MnO x and TiO2 to modify the surface of them. In the case of the Au species, low loading of manganese produced the metallic Au0 and perimeter interfacial Auδ+, whereas high loading showed the coexistence of three components which were metallic Au0, perimeter interfacial Auδ+, and oxidic Au3+. The catalytic active component was the metallic Au0 and perimeter interfacial Auδ+ species, which were dispersed on TiO2 and Mn3+/TiO2.  相似文献   

4.
Fe3+ doped together with Au deposited TiO2 (Au/Fe3+–TiO2) was successfully prepared, which shows excellent photocatalytic activity for degradation of methyl orange (MO) under both UV and visible light (λ > 420 nm) illumination. Fe3+ has been confirmed by EPR to substitute for Ti4+ in the TiO2 lattice, and Au exists as Au0 on the surface of the photocatalyst indicated by the results of XRD. Fe3+ and Au have synergistic effects on improving the photocatalytic activity of TiO2. A proposed mechanism concerning the synergistic effects is discussed to explain the improvement of the photocatalytic activities.  相似文献   

5.
Trace amounts of MgO were doped on Cu/ZnO/Al2O3 catalysts with the Cu/Zn/Al molar ratio of 45/45/10 and tested for the water–gas shift (WGS) reaction. A mixture of Zn(Cu)–Al hydrotalcite (HT) and Cu/Zn aurichalcite was prepared by co-precipitation (cp) of the metal nitrates and calcined at 300 °C to form the catalyst precursor. When the precursor was dispersed in an aqueous solution of Mg(II) nitrate, HT was reconstituted by the “memory effect.” During this procedure, the catalyst particle surface was modified by MgO-doping, leading to a high sustainability. Contrarily, cp-Mg/Cu/Zn/Al prepared by Mg2+, Cu2+, Zn2+ and Al3+ co-precipitation as a control exhibited high activity but low sustainability. Mg2+ ions were enriched in the surface layer of m-Mg–Cu/Zn/Al, whereas Mg2+ ions were homogeneously distributed throughout the particles of cp-Mg/Cu/Zn/Al. CuO particles were significantly sintered on the m-catalyst during the dispersion, whereas CuO particles were highly dispersed on the cp-catalyst. However, the m-catalyst was more sustainable against sintering than the cp-catalyst. Judging from TOF, the surface doping of MgO more efficiently enhanced an intrinsic activity of the m-catalyst than the cp-catalyst. Trace amounts of MgO on the catalyst surface were enough to enhance both activity and sustainability of the m-catalyst by accelerating the reduction–oxidation between Cu0 and Cu+ and by suppressing Cu0 (or Cu+) oxidation to Cu2+.  相似文献   

6.
Pd/Pt supported on pure and doped TiO2 (TiO2–WO3 and TiO2–WO3–SiO2) were prepared and characterized by different techniques (XPS, TEM, XRD, H2-TPR and TPD of ammonia). These catalysts were investigated in the hydrogenation of tetralin at 6.0 MPa, checking also their thio-tolerance by feeding increasing amounts of dibenzothiophene (DBT, 300 and 1000 wt ppm). The catalytic activity followed the order: Pd/Pt–TiO2 > Pd/Pt–TiO2–WO3–SiO2 > Pd/Pt–TiO2–WO3, evidencing a negative role of a second oxide inside TiO2. The Pd/Pt–TiO2 catalyst showed high activity regardless of reaction conditions (temperature, contact time, H2/tetralin ratio) together with a good thio-tolerance up to 300 wt ppm of DBT.  相似文献   

7.
Cu/ZnO/TiO2 catalysts were prepared via the coprecipitation method. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectrometry, temperature programmed reduction, and N2 adsorption. The catalytic activity of Cu/ZnO/TiO2 catalyst in gas phase hydrogenation of maleic anhydride in the presence of n-butanol was studied at 235–280 °C and 1 MPa. The conversion of maleic anhydride was more than 95.7% and the selectivity of tetrahydrofuran was up to 92.7%. At the same time, n-butanol was converted to butyraldehyde and butyl butyrate via reactions, namely, dehydrogenation, disproportionation, and esterification. There were two kinds of CuO species present in the calcined Cu/ZnO/TiO2 catalysts. At a lower copper content, the CuO species strongly interacted with ZnO and TiO2; at a higher copper content, both the surface-anchored and bulk CuO species were present. The metallic copper (CuO) produced by the reduction of the surface-anchored CuO species favored the deep hydrogenation of maleic anhydride to tetrahydrofuran. The deep hydrogenation activity of Cu/ZnO/TiO2 catalyst increased with the decrease of crystallite sizes of CuO and the increase of microstrain values. Compensations of reaction heat and H2 in the coupling reaction of maleic anhydride hydrogenation and n-butanol dehydrogenation were distinct.  相似文献   

8.
Recent research trends of the preparation and characterization of highly efficient titanium oxide-based photocatalysts modified by different methods are reviewed on the basis of studies done in our laboratory. Special attention is focused on the preparation and characterization of TiO2 photocatalysts prepared by the transitional metal doping and noble metal deposition method, especially combining above two methods. Fe3+ doped together with Au deposited TiO2 (Au/Fe3+–TiO2) was successfully prepared, which shows excellent photocatalytic activity for degradation of methyl orange (MO) under both UV and visible light (λ > 420 nm) illumination. Fe3+ has been confirmed by EPR to substitute for Ti4+ in the TiO2 lattice, and Au exists as Au0 on the surface of the photocatalyst indicated by the results of XRD. Fe3+ and Au have synergistic effects on improving the photocatalytic activity of TiO2. A proposed mechanism concerning the synergistic effects is discussed to explain the improvement of the photocatalytic activities.  相似文献   

9.
Eutectic temperature and composition in the CuO-TiO2 pseudobinary system have been experimentally determined in air by means differential thermal analysis (DTA), thermogravimetry (TG) and hot-stage microscopy (HSM). Samples of the new eutectic composition treated at different temperatures have been characterized by X-ray diffraction (XRD) and X-ray absorption near-edge structural spectroscopy (XANES) to identify phases and to determine the Cu valence state, respectively. The results show that the eutectic temperature in air is higher by 100 °C (∼1000 °C) for a Ti-richer composition (XTiO2=25 mol%) than the one calculated in the literature. The reduction of Cu2+ to Cu+ takes places at about 1030 °C. The existence of Cu2TiO3 and Cu3TiO4 has been confirmed by XRD in the temperature range between 1045 and 1200 °C.  相似文献   

10.
The structural changes of the supported vanadium oxide in the V2O5/TiO2(anatase) EUROCAT EL10V8 powder catalyst during reduction and oxidation at 420 and 490 °C were studied with in-situ X-ray absorption spectroscopy (XAS). The Vanadium K-edge XAS results are compared with pure bulk V2O5. For the reduction–oxidation cycle at 420 °C, similar structural changes as for bulk V2O5 were observed for the supported vanadium oxide: a reduction to the VO2 structure and re-oxidation back to V2O5. After reduction at 490 °C however, a different structure was obtained: very regular “VO6” octahedra with a V2.8+ valence. This may point to a structural support effect.  相似文献   

11.
Nanosized solid superacids SO4 2−/TiO2 and S2O8 2−/TiO2, as well as MCM-41-supported SO4 2−/ZrO2, were prepared. Their structures, acidities, and catalytic activities were investigated and compared using XRD, N2 adsorption-desorption, and in situ FTIR-pyridine adsorption, as well as an evaluation reaction with pseudoionone cyclization. The results showed that SO4 2−/TiO2 and S2O8 2−/TiO2 possess not only nanosized particles with diameters < 7.0 nm, a BET surface greater than 140 cm2/g and relatively regular mesostructures with pores around 4.0 nm, but also a pure anatase phase and strong acidity. Different from the Lewis acid nature of SO4 2−/ZrO2/MCM-41, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibit mainly Bronsted acidities. The strongest Bronsted acid sites were produced on SO4 2−/TiO2 promoted with H2SO4, while Lewis acid sites on S2O8 2−/TiO2 even stronger than those on SO4 2−/ZrO2/MCM-41 were generated when persulfate solution was used as sulfating agent. Because of their distinct acid natures, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibited catalytic activities for the cyclization of pseudoionone that were much higher than that of SO4 2−/ZrO2/MCM-41. It can be concluded that the existence of more Br?nsted acid sites was favorable for proton participation in the cyclization reaction. Translated from Journal of Chemical Engineering of Chinese Universities, 2006, 20(2): 239–244 [译自: 高校化学工程学报]  相似文献   

12.
The Effect of Additives on Cu/HZSM-5 Catalyst for DME Synthesis   总被引:6,自引:0,他引:6  
The addition of ZnO or ZrO2 into CuO/HZSM-5 was investigated for DME synthesis from syngas by using the reactive frontal chromatography method, TPR and in situ TPR. These promoters enhanced the catalytic activity of Cu/HZSM-5 and promotion with ZnO and ZrO2 produced a maximum activity, which could be explained by the improvement of the dispersion of Cu and the promotion of CuO reduction. The Cu+ species existing during the reaction have been detected, based on which a Cu0 Cu+1 redox cycle model was put forward.  相似文献   

13.
Solid acid catalysts of SO42−/TiO2/MCM-41 and S2O82−/TiO2/MCM-41 were prepared via grafting method and sulfate/persulfate promotion. The catalysts exhibited desirable activity and better selectivity for cyclization reaction of pseudoionone compared to traditional SO42−/TiO2. A combination of XRD, N2 adsorption–desorption and FTIR spectroscopy indicated that the catalysts possess well-ordered mesostructure, and the grafted TiO2 are in highly dispersed amorphous form rather than crystalline phase. For S2O82−/TiO2/MCM-41 higher S content and more Br?nsted acid sites can be achieved by persulfation, which is favorable for the protons participated cyclization reaction. The similar Si–O–Ti–O–S=O structure of all acid sites on pore surface of the catalysts is attributed to the improvement of selectivity in comparison with SO42−/TiO2.  相似文献   

14.
A series of catalysts, NiSO4/Al2O3–TiO2, for acid catalysis was prepared by the impregnation method, where support, Al2O3–TiO2 was prepared by the coprecipitation method using a mixed aqueous solution of titanium tetrachloride and aluminum nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or Al2O3) to TiO2 shifted the phase transition of TiO2 from amorphous to anatase to higher temperature because of the interaction between nickel sulfate (or Al2O3) and TiO2. 15-NiSO4/5-Al2O3–TiO2 containing 15 wt% NiSO4 and 5 mol% Al2O3, and calcined at 400°C exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The charge transfer from Ti atoms to the neighboring Al atoms strengthens the Al–O bond between Al and the surface sulfate species. The addition of Al2O3 up to 5 mol% enhanced the acidity, thermal property, and catalytic activities of NiSO4/Al2O3–TiO2 gradually due to the interaction between Al2O3 and TiO2 and consequent formation of Al–O–Ti bond.  相似文献   

15.
A series of catalysts, NiSO4/TiO2–ZrO2 having different TiO2–ZrO2 composition, for acid catalysis was prepared by the impregnation method using an aqueous solution of nickel sulfate. The addition of TiO2 to ZrO2 improved the surface area of the catalyst and enhanced its acidity remarkably because of the formation of new acid sites through the charge imbalance of Ti–O–Zr bonding. The binary oxide, TiO2–ZrO2 calcined above 600 °C resulted in the formation of crystalline orthorhombic phase of ZrTiO4. Therefore, NiSO4/TiO2–ZrO2 calcined at 500 °C exhibited a maximum catalytic activity for acid catalysis, and then the catalytic activity decreased with the calcination temperature. The correlation between catalytic activity and acidity held for both reaction, 2-propanol dehydration and cumene dealkylation. NiSO4 supported on 50TiO2–50ZrO2 (TiO2/ZrO2 ratio = 1) among TiO2–ZrO2 binary oxides exhibited the highest catalytic activity for acid catalysis.  相似文献   

16.
The contact angles of the water droplets on TiO2 single crystal surfaces decreased and became superhydrophilic state by γ-ray irradiation. It was found that these behaviors were dependent on γ-ray irradiation atmosphere, i.e., in air and in N2 atmosphere (r. h.; 30%) as well as crystal faces of TiO2 single crystals, i.e., TiO2 (100) and (110) surfaces. It was also found from the results of UV–Vis and ESR measurements that γ-ray irradiation under N2 atmosphere led to the oxygen vacancies and associated Ti3+, regardless of the presence of gaseous water. Moreover, it was suggested that the organic molecules adsorbed on TiO2 single crystal surfaces decomposed by γ-ray irradiation.  相似文献   

17.
In order to obtain basic information about photochemical degradability and degradation products for 1- and 2-methylphenanthrenes (MPs), photodegradation of these compounds in an organic solvent (acetonitrile) and on some solids (soil, silica gel [SiO2], and titanium dioxide [TiO2]) were carried out in a laboratory using solar simulators.

The results showed that the degradation rate (%) increases in the order of TiO2 > SiO2 > acetonitrile > soil. Products formed in acetonitrile included aromatic compounds with molecular ion [M+] peaks at m/z = 148, 162, 198, 206, 208, 210, 222, 224 and 238. In case of 1 MP, a compound with M+ 206, which was identified as 1-phenanthrene-carbaldehyde, was predominantly formed. However, 2MP showed no predominance for M+ 206 and also yielded M+ 210 and M+ 224 as major products. Degradation on soil and SiO2 gave similar products to those detected in acetonitrile, while that on TiO2 gave different products from the formers. Based on the results of product analysis, three degradation pathways which may occur in acetonitrile are proposed.  相似文献   

18.
Francisco  M.S.P.  Mastelaro  V.R.  Florentino  A.O.  Bazin  D. 《Topics in Catalysis》2002,18(1-2):105-111
A structural study of CuO supported on a CeO2–TiO2 system was undertaken using X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) techniques. The results of XRD revealed the presence of only two phases, TiO2 anatase and CeO2 cerianite. A trend towards smaller TiO2 crystallites was observed when cerium content increased. When the amount of cerium increased, Ti K-edge XANES analysis showed an increasing distortion of Ti sites. The results of Ce LIII-edge EXAFS showed that Ce atoms are coordinated by eight oxygen atoms at 2.32 Å. For the sample containing a small amount of cerium, the EXAFS analysis indicated that the local structure around Ce atoms was highly distorted. The catalysts presented quite different Cu K-edge XANES spectra compared to the spectra of the CuO and Cu2O reference compounds. The Cu–O mean bond length was close to that of the CuO and the Cu atoms in the catalysts are surrounded by approximately four oxygen atoms in their first shell. Copper supported on the ceria-modified titania support catalysts displayed a better performance in the methanol dehydrogenation when compared to copper supported only on titania or on ceria.  相似文献   

19.
The V2O5 catalysts supported on TiO2–SiO2–MoO3 (TSM) prepared by the coprecipitation method were investigated for the selective catalytic reduction (SCR) of NO by NH3 at low temperatures. The V2O5/TSM catalyst with 7–13 wt% SiO2 was found to exhibit a superior SCR activity and a good sulfur tolerance at low temperatures (<250 °C). The presence of highly active polymeric vanadates formed by the incorporation of MoO3 to TiO2–SiO2 and superior redox properties seems to enhance SCR activity, and furthermore the very lower SO2 oxidation activity due to the higher acidity leads to the remarkable improvement of sulfur tolerance.  相似文献   

20.
The subject of this paper is the effect of foreign cations on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system. One reference mixture and eighteen modified mixtures, prepared by mixing the reference sample with 1% w/w of chemical grade MnO2, CuO, V2O5, PbO, CdO, ZrO2, Li2O, MoO3, Co2O3, NiO, WO3, ZnO, Nb2O5, CrO3, Ta2O5, TiO2, BaO2 and H3BO3 were studied. The effect on the reactivity is evaluated on the basis of the free lime content in samples sintered at 1200 and 1450 °C. At 1200 °C, the reactivity of the mixture is greatly increased in the presence of Cu and Li oxides. Based on their effect at 1450 °C, the added elements can be divided into three groups. W, Ta, Cu, Ti and Mo show the most positive effect, decreasing the free CaO (fCaO) content by 30-60%, compared with the pure sample. Cr and B cause an increase of fCaO content, while the rest of the elements exhibit a marginal positive effect. According to their volatility at 1450 °C, the added compounds can be subdivided into three groups of low (Ti4+, Cu2+, Mo6+, W+6, V5+, Zn2+, Zr4+), moderate (Cr6+, Co3+, Ni2+, Mn4+) and high volatility (Cd2+, Pb2+). All burned samples, analyzed by means of X-ray diffraction, have a final mineralogical composition, which corresponds to the structure of a typical clinker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号