首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the bismuth nanowire, and a difference between the resistivities of the two-wire and four-wire methods was observed. It was concluded that the two-wire method was unsuitable for estimation of the resistivity due to the influence of contact resistance, even if the magnitude of the bismuth nanowire resistance was greater than the kilo-ohm order. Furthermore, Hall measurement of a 4-μm-diameter bismuth microwire was also performed as a trial, and the evaluated temperature dependence of the carrier mobility was in agreement with that for bulk bismuth, which indicates that the carrier mobility was successfully measured using this technique.

PACS

81.07.Gf  相似文献   

2.
In multi‐component materials, triple phase boundary (TPB) is the location where reactions occur. A typical example is the TPB encountered in solid oxide fuel cells at the cathode–electrolyte interface. We proposed a tomographic approach that was developed based on serial sectioning using a focused dual ion beam (FIB) system. For image capture, FIB tomography was coupled with scanning electron microscopy, and differentiation of the composite cathode materials was possible through image contrast adjustment. An algorithm, built on the Hoshen–Kopelman theory, was then applied to measure TPB length. The percentage of the connected TPB line was also calculated with the algorithm for 3D computation. © 2011 Canadian Society for Chemical Engineering  相似文献   

3.
4.
Direct observations of the primary mouse CD4 T cell morphologies, e.g., cell adhesion and cell spreading by culturing CD4 T cells in a short period of incubation (e.g., 20 min) on streptavidin-functionalized quartz nanopillar arrays (QNPA) using a high-content scanning electron microscopy method were reported. Furthermore, we first demonstrated cross-sectional cell traction force distribution of surface-bound CD4 T cells on QNPA substrates by culturing the cells on top of the QNPA and further analysis in deflection of underlying QNPA via focused ion beam-assisted technique.  相似文献   

5.
Improvements to electrode performance are essential to accelerate the commercialisation of SOFC technology. A key metric of performance for SOFC electrodes is the length and distribution of three or triple phase boundaries (TPBs) which provide an indication of electrochemical performance. Techniques that can be used to characterise TPB length are highly valuable; with an increasing knowledge of electrode microstructures, electrochemical performance can be optimised. One such technique for electrode characterisation uses focused ion beams (FIB) to sequentially mill and image an electrode surface, obtaining a sequence of 2D images that may be reconstructed in a 3D space. In this paper we present a technique to maximise the quality of the raw data obtained via ex-situ characterisation of electrode micro-sections based on FIB lift-out. With improved raw data, we have been able to conduct semi-automated image analysis to extract key microstructural information, including the length and distribution of TPBs.Reconstructions have been carried out using both single and dual beam instruments; two reconstructions of Ni-YSZ anode structures are presented here.  相似文献   

6.
This contribution couples (a) Small angle X-ray scattering (SAXS) experiments of a high-performance concrete (HPC) at the millimetric scale, and (b) Focused ion beam/scanning electron microscopy (FIB/SEM) of the cement paste of the HPC, with 10-20 nm voxel size. The aim is to improve the understanding of the 3D pore network of the HPC at the mesoscale (tens of nm), which is relevant for fluid transport. The mature HPC is an industrial concrete, based on pure Portland CEMI cement, and planned for use as structural elements for deep underground nuclear waste storage. Small angle X-ray scattering patterns are computed from the 3D pore images given by FIB/SEM (volumes of 61-118 μm3). They are positively correlated with SAXS measurements (volumes of 5 mm3). Aside from correlations with FIB/SEM data, experimental SAXS allows to investigate a wider range of effects on the pore structure. These are mainly the HPC drying state, the presence of aggregates (by analyzing data on cement paste alone), and the use of Poly Methyl MethAcrylate resin impregnation.  相似文献   

7.
Focused beam reflectance measurement (FBRM), where a scanning laser focused through a sapphire window measures real‐time reflected chord distributions without solids dilution, is attractive for characterizing flocculation performance. An enhanced measurement principle in new FBRM instruments has implications for flocculation studies, demonstrated using hematite in synthetic Bayer liquor. Comparisons of previous (M500) and new (G400) instruments were complicated by the impact of their different physical dimensions upon flocculation hydrodynamics, but the G400 clearly measured larger chords. The original measurement principle based on a reflected intensity threshold counts large low‐density aggregates as multiple chords; in contrast, the change to “edge detection” (very low threshold) is more likely to see a single chord, an advantage for studying mineral systems (aggregates often >500 µm). The G400 also captures bimodal character in unweighted chord distributions, producing distinct peaks for aggregates and fines after suboptimal flocculation; such peaks are rarely well resolved in older FBRM. © 2013 American Institute of Chemical Engineers AIChE J, 60: 251–265, 2014  相似文献   

8.
The effects of intense pulsed high power ion beam (HPIB) treatment of ultra-high strength polyethylene (UHSPE) fibers on the fiber/epoxy resin interface strength were studied. For this study, argon ions were used to treat Spectra? 1000 (UHSPE) fibers in vacuum. Chemical and topographical changes of the fiber surfaces were characterized using Fourier transform infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), dynamic wettability measurements, and scanning electron microscopy (SEM). The fiber/epoxy resin interfacial shear strength (IFSS) was evaluated by the single fiber pull-out test. The FTIR-ATR and XPS data indicate that oxygen was incorporated onto the fiber surface as a result of the HPIB treatment. The wettability data indicate that the fibers became more polar after HPIB treatment and also more wettable. Although the total surface energy increased only slightly after treatment, the dispersive component decreased significantly while the acid-base component increased by a similar amount. SEM photomicrographs revealed that the surface roughness of the fibers increased following the HPIB treatment. The single fiber pull-out test results indicate that HPIB treatment significantly improved the IFSS of UHSPE fibers with epoxy resin. This enhancement in IFSS is attributed to increased roughness of the fiber surface resulting in mechanical bonding and in increased interface area, increased polar nature and wettability, and an improvement in the acid-base component of the surface energy after the HPIB treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号