首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silver nanowire (AgNWs) inks for inkjet printing were prepared and the effects of the solvent system, wetting agent, AgNWs suspension on the viscosity, surface tension, contact angle between ink droplet and poly(ethylene) terephthalate (PET) surface, and pH value of AgNWs ink were discussed. Further, AgNWs flexible transparent conductive films were fabricated by using inkjet printing process on the PET substrate, and the effects of the number printing layer, heat treatment temperature, drop frequency, and number of nozzle on the microstructures and photoelectric properties of AgNWs films were investigated in detail. The experimental results demonstrated that the 14-layer AgNWs printed film heated at 60 °C and 70 °C had an average sheet resistance of 13 Ω∙sq−1 and 23 Ω∙sq−1 and average transparency of 81.9% and 83.1%, respectively, and displayed good photoelectric performance when the inkjet printing parameters were set to the voltage of 20 V, number of nozzles of 16, drop frequency of 7000 Hz, droplet spacing of 15 μm, PET substrate temperatures of 40 °C and nozzles of 35 °C during printing, and heat treatment at 60 °C for 20 min. The accumulation and overflow of AgNWs at the edges of the linear pattern were observed, which resulted in a decrease in printing accuracy. We successfully printed the heart-shaped pattern and then demonstrated that it could work well. This showed that the well-defined pattern with good photoelectric properties can be obtained by using an inkjet printing process with silver nanowires ink as inkjet material.  相似文献   

2.
The inkjet deposition of a single functional material on a substrate is well developed, however, little attention has been paid to the sequential printing of different functional elements to generate complex 3D structures. The successful all additive manufacture of electronics circuits requires the printing of features such as crossovers and interconnections, the passive elements in electronics where metal–insulator–metal must be sequentially deposited with retained function. We describe the inkjet printing of both a commercial silver nanoparticle metal and a cationic/thermally cured epoxy insulator, SU8, and discuss the role of print strategy and surface treatment on retaining functionality. The issues to be addressed in the successful all inkjet printing of such features are discussed.  相似文献   

3.
In this study, we are introducing a new class of Polyurethane (PU) nanofibers containing silver nanoparticles (NPs) by electrospinning. A simple method not depending on the addition of foreign chemicals has been used to self‐synthesize of silver NPs in/on PU nanofibers. Typically, a sol?gel consisting of AgNO3/PU/N,N‐dimethylformamide (DMF) has been electrospun and aged for a week, so silver NPs have been created in/on PU nanofibers. Syntheses of silver NPs were carried out by exploiting the reduction ability of the DMF solvent which is the main constituent to obtain PU electrospun nanofibers in decomposition of silver nitrate precursor into silver NPs. Physiochemical characterizations confirmed well oriented nanofibers and good dispersing of pure silver NPs. Various parameters affecting utilizing of the prepared nanofibers on various nano‐biotechnological fields have been studied. For instance, the obtained nanofiber mats were checked for mechanical properties which showed the improvement of the tensile strength upon increase in silver NPs content. Moreover, the nanofibers were subjected to 10 times successive washing experiments with using solid to liquid ratio of 3 : 5000 for 25 h, UV spectroscopy analysis reveals no losses of silver NPs from the PU nanofibers. 3T3‐L1 fibroblasts were cultured in presence of the designed nanofibers. The morphological features of the cells attached on nanofibers were examined by BIO‐SEM, which showed well attachment of cells to fibrous mats. The cytotoxicity results indicated absence of toxic effect on the 3T3‐L1 cells after cell culturing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Inkjet printing technique is exploited for the synthesis of Ag nanoparticles (NPs) patterned on electrochemically etched silicon-based substrates. The nanostructure morphology, here analyzed by scanning electron microscopy, is dictated by the ink composition and the printing parameters. Under suitable excitation conditions, resonant surface-enhanced Raman scattering (SERS) performed on such metal-dielectric nanostructures can approach single-molecule detection as recently demonstrated on silvered porous silicon synthesized by immersion plating.

PACS

78.67.Bf; 78.30.-j  相似文献   

5.
Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both gram negative (Escherichia coli and Pseudomonas aeruginosa) and gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.  相似文献   

6.
The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.  相似文献   

7.
A detailed procedure for the preparation of gadolinium doped (10 mol%) cerium (IV) oxide (CGO) suspension for inkjet printing is described in this paper. The optimisation of inkjet printing parameters for the deposition of solid oxide fuel cell electrolytes was also performed using a custom-built drop visualisation system. Additionally, the uniformity of the deposited drop relics on porous substrates was evaluated. The ink used in this study was an evaporative type comprising a solvent mixture of terpineol and methanol, ethyl cellulose and CGO powder. Successful printing of regular drops was achieved after printing optimisation. It has been demonstrated that inkjet printing is a promising technique for high quality membrane fabrication for applications including solid oxide fuel cells. The ink formulation and optimisation procedure would also be applicable for other ceramic ink development.  相似文献   

8.
Medical applications require, in most cases, antibacterial protection. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. In this research work, we have used silver nanoparticles (Ag NPs) with different surfactants, polyvinyl pyrrolidone (PVP) and oleic acid (OA) to facilitate dispersion. PP‐Ag NPs compounds were prepared by melt mixing, and the effects of the processing conditions on nanoparticles' dispersion were investigated by transmission electron microscopy (TEM). The antibacterial efficiency of PP‐Ag NPs compounds against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 8379 was evaluated. Results show that good dispersion is obtained with rotating speeds in the 350–500 rpm range. TEM analysis reveals balanced dispersion and presence of some Ag NPs aggregates. Regarding antimicrobial properties, the use of PVP as surfactant leads to “significant” antimicrobial activity of 1.5 against Staphylococcus aureus and Escherichia coli; on other hand, the use of oleic acid (OA) as surfactant leads to strong protection against Staphylococcus aureus (antimicrobial activity between 2.5 and 3.3) but the overall protection against Escherichia coli is very low (lower than 1). Results show that the use of surfactants for Ag NPs has important effects on antibacterial properties of polypropylene filled with coated Ag NPs. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
A green and size-controlled synthesis of silver nanoparticles (Ag NPs) in aqueous solution with the assistance of L-cysteine is presented. The size of Ag NPs decreases with the increase of L-cysteine concentration, and thus can be controlled by adjusting L-cysteine concentration. TEM analysis shows that Ag NPs with an average size of 3 nm can be produced in the presence of 1.0 mmol/L L-cysteine, about one sixth of the size of Ag NPs obtained in the absence of L-cysteine (17 nm). The as-synthesized silver colloidal solution is stable and can be stored at room temperature for at least two months without any precipitation. This L-cysteine assisted method is simple, feasible and efficient, and would facilitate the production and application of Ag NPs.  相似文献   

10.
Semitransparent front electrodes for polymer solar cells, that are printable and roll-to-roll processable under ambient conditions using different approaches, are explored in this report. The excellent smoothness of indium-tin-oxide (ITO) electrodes has traditionally been believed to be difficult to achieve using printed front grids, as surface topographies accumulate when processing subsequent layers, leading to shunts between the top and bottom printed metallic electrodes. Here we demonstrate how aqueous nanoparticle based silver inks can be employed as printed front electrodes using several different roll-to-roll techniques. We thus compare hexagonal silver grids prepared using either roll-to-roll inkjet or roll-to-roll flexographic printing. Both inkjet and flexo grids present a raised topography and were found to perform differently due to only the conductivity of the obtained silver grid. The raised topographies were compared with a roll-to-roll thermally imprinted grid that was filled with silver in a roll-to-roll process, thus presenting an embedded topography. The embedded grid and the flexo grid were found to perform equally well, with the flexographic technique currently presenting the fastest processing and the lowest silver use, whereas the embedded grid presents the maximally achievable optical transparency and conductivity. Polymer solar cells were prepared in the same step, using roll-to-roll slot-die coating of zinc oxide as the electron transport layer, poly-3-hexylthiophene:phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) as the active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode, along with a flat bed screen printed silver grid. The power conversion efficiency (PCE) obtained for large area devices (6 cm(2)) was 1.84%, 0.79% and 1.72%, respectively, for thermally imprinted, inkjet and flexographic silver grids, tested outside under the real sun. Central to all three approaches was that they employed environmentally friendly solvents, i.e. water based nanoparticle silver inks.  相似文献   

11.
We demonstrate a facile route to decorate the surface of networked single walled carbon nanotubes (SWNTs) with silver nanoparticles (Ag NPs). The method is based on utilization of either spherical poly(styrene-b-4vinylpyridine) (PS-b-P4VP) or cylindrical poly(styrene-b-acrylic acid) (PS-b-PAA) copolymer micelles capable of stabilizing nanotubes in solution and subsequently forming a thin and uniform block copolymer/SWNTs composite film upon spin coating. The selective doping of silver acetate into either P4VP or PAA domains in a thin composite film, followed by thermal treatment, results in the formation of Ag NPs in the cores of micelles. Further heat treatment at 500 °C sufficiently high for degrading both block copolymers allows us to fabricate a thin SWNTs network in which Ag NPs are efficiently deposited on the surface of nanotubes. A sharp surface plasmon absorption band around 400 nm of the networked SWNTs with Ag NPs confirms the presence of Ag NPs with narrow distribution in their size.  相似文献   

12.
It is not simple to accurately deposit minute quantities of polymeric materials by inkjet printing systems. High viscosity, nozzle clogging, agglomeration, precipitation, and uncontrollable drying patterns are serious problems which are frequently encountered in polymer inkjet printing. In this study, we investigated how inkjet printability of polymers correlates with the polymer ink formulations and inkjet process variables. After a systematic study with different variables, various patterns such as dots, cross stripes, and honeycombs were fabricated on flexible polyimide (PI) films and the pattern morphology and spatial distribution of the resulting polymer deposits after solvent drying were characterized.  相似文献   

13.
Inkjet printing has become a prevailing printing technology due to its practicability and rapidity. The color inkjet printing as one of the inkjet printing has color comprehensive and high clarity compared with traditional printing. The key point of the color inkjet printing is the introducing of special recording layer which has great influence on the printing quality. However, the printing quality of the color inkjet printing depends on the compositions and performance of the recording layer and the infiltration behavior between the ink and the recording layer. Specially, the theoretical study of the infiltration behavior between the ink and the recording layer is the key to guiding the structural design. In this review, the types and compositions of the recording layer were clearly analyzed, the process and evaluation methods of ink infiltration and the performance evaluation system of the recording layer were also summarized. Ultimately, the current bottleneck and the development trend of the recording layer were put forward.  相似文献   

14.
Antimicrobial silver nanoparticles (NPs) were successfully synthesized on the surface of silk fibers via γ‐ray irradiation. The products were characterized with scanning electron microscope (SEM), energy dispersion spectrum, and X‐ray diffraction. The results revealed that the silver particles with a diameter of less than 20 nm were immobilized and well dispersed on the surface of silk fibers. The antimicrobial capability against the gram positive bacterium Staphylococcus aureus and the washing stability of the silk fibers produced with different conditions were tested and found to be excellent. The silk fibers treated with 1 mM solution and 10 kGy γ‐radiation showed 96% antimicrobial activity and still kept above 85% antibacterial activity after 10 washing cycles. Moreover, a mechanism for the formation of silver NPs on silk fibers under γ‐radiation was generally discussed. The resulting silk fibers coated with silver NPs can be useful as functional fabrics in a range of applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
黄琦金  沈文锋  宋伟杰 《化工进展》2015,34(5):1332-1339
反应喷墨打印技术作为喷墨打印电子技术的重要分支,因其可以在沉积材料的同时可得到器件而受到人们的广泛关注.本文详细阐述了反应喷墨打印技术在功能材料制备领域,特别是在金属材料、高分子材料、无机材料等方面的研究进展,说明了反应喷墨打印用墨水是未来喷墨印刷电子研究的关键技术之一,简要介绍了反应喷墨打印技术与三维打印的联系,指出其在金属电路、有机发光二极管等印刷电子产业领域有广阔的应用前景.  相似文献   

16.
Silver nanoparticle suspensions were synthesized by chemical reduction method using a formaldehyde reductant. Polyvinyl pyrrolidone (PVP) of two different molecular weights (M.W.=8,000 and 29,000) was used as a stabilizer for the suspensions. PVP of a smaller molecular weight could produce silver suspensions of nanoparticle size around 20 nm. Water-based conductive silver inks with different silver concentrations were prepared and tested for suitability for screen printing. We have successfully printed silver metal lines on glass substrates using a 400 mesh screen-mask with 60wt.% silver ink prepared in this study. Curing at a low temperature of 200 °C for an hour was found sufficient to reach the lowest resistivity value with the synthesized ink. For a line with a width and thickness of 0.5 mm and 2.12 μm, respectively, it exhibited a resistivity of 3.3×10−5 Ω·cm, which could serve as conducting lines for various electronic applications.  相似文献   

17.
Antibacterial polycaprolactone (PCL) electrospun fiber mats were prepared by coelectrospinning PCL with soluble eggshell membrane protein (SEP) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP), followed by adsorption of silver nanoparticles (Ag NPs) through hydrogen‐bonding interaction between the amide groups of SEP and the carboxylic acid groups capped on the surfaces of Ag NPs. The PCL/SEP fiber mat was characterized by X‐ray photoelectron spectroscopy, indicating the presence of some SEP on the fiber surface. The adsorption of Ag NPs was confirmed by transmission electron microscopy and quantitatively characterized by thermogravimetric analysis. The pH value of the silver sol used for adsorption is very important in view of the amount and dispersion state of Ag NPs adsorbed on the fibers. The Ag NP–decorated PCL/SEP fiber mats prepared at pH 3–5 exhibit strong antibacterial activity against both gram‐negative Escherichia coli and gram‐positive Bacillus subtilis. Antibacterial PCL fiber mats were also obtained similarly with the assistance of collagen (another protein) instead of SEP, showing that protein‐assisted adsorption of Ag NPs is a versatile method to prepare antibacterial electrospun fiber mats. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43850.  相似文献   

18.
Shape-controlled silver nanoparticles (Ag NPs) were prepared in a well-dispersed mode on the active imprinting sites of chitosan-TiO2 adsorbent (CTA) by means of bioaffinity adsorption and TiO2 photocatalysis. Nontoxic hydrogen peroxide (H2O2) was used as a suitable etching reagent in our production of shape-controlled Ag NPs, since it could regulate the TiO2 photocatalysis and accelerate the generation of O2. With the same amount of H2O2 addition, silver nanocubes, nanospheres and truncated triangular nanoplates were individually obtained on the surface of CTA under UV irradiation by facilely adjusting the initial Ag+ concentration. The FE-SEM, XRD and UV-visible characterizations confirmed single crystal Ag NPs with different shapes loaded on CTA. The mechanism for the formation of shape-controlled Ag NPs was discussed based on a photocatalytic reaction system. As an example of applications of the Ag NPs, we tested the biocidal properties, and silver nanocubes exhibited the highest antibacterial activity. Our research provided a simple synthesis for shape-regulated Ag NPs steadily loaded on CTA. It might moreover be a guide in preparing metal nanocrystals monodispersely immobilized on chemical substrates.  相似文献   

19.
A new method for fabricating functionally graded materials (FGMs) via inkjet color printing is reported in this paper. Al2O3 and ZrO2 aqueous suspensions were stabilized electrostatically and placed in different color reservoirs in inkjet cartridges. The volume and composition of the suspensions printed in droplets at a small area were controlled by the inkjet cyan–magenta–yellow–black color printing principle. The analysis of energy-dispersive spectrometry shows that with multi-layer printing, the composition profile of the printed FGM is consistent with the designed profile. The new method shows the potential for fabricating FGMs with arbitrarily designed three-dimensional composition profiles.  相似文献   

20.
Silver/polyaniline nanocomposites (Ag NPs/PANI) containing PANI nanofiber and Ag nanoparticles were synthesized by one-step approach without using any extra reducing agent or surfactant and applied to new antimicrobial agents. Morphologies and crystallinity of the nanocomposites were characterized with SEM and XRD. The results showed that the average diameter of the PANI nanofibers is around 50–150 nm, and the average particle size of Ag NPs is around 100 nm. The crystallinity of PANI gets better with increasing silver nitride concentration. UV–vis absorption spectroscopy analysis indicated that the Ag NPs have some effect on the microstructure of PANI. The antimicrobial properties of Ag NPs/PANI against Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus and fungous Yeast were evaluated using viable cell counts. The test results demonstrated that Ag NPs/PANI have enhanced antimicrobial efficacy compared to that of pure Ag NPs or pure PANI under the same test condition. The mechanism of the synergistic antimicrobial effect of Ag NPs with PANI was also proposed. In addition, thermal gravity analysis indicated that pure PANI and Ag NPs/PANI exhibit better thermal stability. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号